19 December 2018

Final RC Drill Results Extend Gidgee Discovery

Highlights

- Assay results received for the final 8 holes from the 26 hole RC drilling program completed in October.
- All 5 holes from Gidgee Flat reported gold greater than 1g/t Au, extending the mineralised zone to over 300m of strike. Results include:
 - **LNRC056**
 - 6m at 3.7g/t Au from 191m, including 1m at 8.3g/t Au from 194m.
 - o **LNRC055**
 - 4m at 5.4g/t Au from 32m
 - 4m at 5.6g/t Au from 96m
 - 2m at 3.0g/t Au from 205m and
 - 6m at 1.7g/t Au from 212m
 - LNRC061 and LNRC062 targeted the bedrock below LNR1079 (4m at 6.8g/t Au from 44m) at the northern limit of RC drilling, intersecting 2m at 1.6g/t Au from 174m and 1m at 2.6g/t Au from 213m, respectively.
- Results were received for the final 3 RC holes drilled at Contessa. No significant assays were reported, however two of the three holes did not achieve planned depth.
- The entire 26 hole RC program provided important structural and geological information and a range of significant assay results that will be reviewed in detail and used to inform and plan the next major RC drill program following a planned IP geophysics survey.
- 11 of 77 planned reconnaissance aircore drill holes targeting large multi-element geochemical anomalies on the Yowereena JV have been completed. The program has been temporarily suspended due to the drill rig being unsuitable for the ground conditions encountered.
 - Of note, hole LNR1109 intersected quartz veining and 1m of massive pyrite at 104m within the target area.

Lodestar Minerals Limited 1st Floor, 31 Cliff Street Fremantle, WA 6160 PO Box 584 Fremantle, WA 6959 ABN: 32 127 026 528

West Australian gold explorer Lodestar Minerals Limited ("Lodestar" or "the Company", ASX : LSR) provides the final assay results for the remaining 8 of 26 RC drill holes completed on the Company's 100% - owned Ned's Creek project (see Figure 1).

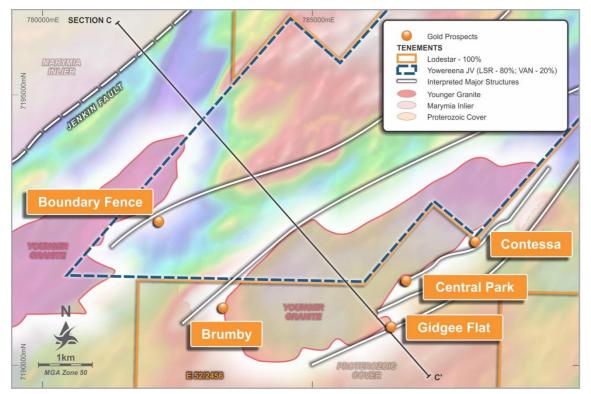


Figure 1 Prospect location plan - Ned's Creek project on background aeromagnetic image, showing principal exploration targets on granite margins.

The results represent 5 holes from Gidgee Flat and 3 holes from the Contessa prospect. Significant results greater than 1g/t Au are listed in Table 1 and results from all holes are listed in the Annexure.

GIDGEE FLAT

The RC drilling targeted the down-dip extension of previously discovered mineralisation (LNRC056), tested continuity of mineralisation between existing RC drilling (LNRC054 and LNRC055) and tested the northern extension of mineralisation, targeting the bedrock beneath LNR1079 (4m at 6.8g/t Au from 44m, see Lodestar's ASX announcement dated 4th July 2018 and Figure 2).

Significant assays from Gidgee Flat include;

LNRC054

- 4m at 1.7g/t Au from 88m and
- 1m at 1.3g/t Au from 114m

LNRC055

- 4m at 5.3g/t Au from 32m
- 4m at 5.6g/t Au from 96m
- 2m at 3.0g/t Au from 205m and
- 6m at 1.7g/t Au from 212m

LNRC056

- 2m at 4.1g/t Au from 100m and
- 6m at 3.7g/t Au from 191m

LNRC061

2m at 1.5g/t Au from 174m
 LNRC062

- 1m at 1.2g/t Au from 72m and
- 1m at 2.6g/t Au from 213m

LNRC056 confirmed a zone of gold mineralisation within a north-dipping structure adjacent to the syenite contact (also intersected in LNRC039 and LNRC053, see Lodestar's ASX announcements dated 22nd May 2018 and 16th November 2018). This zone reported 6m at 3.7g/t Au from 191m in LNRC056 (see Figure 3) and remains open at depth and along strike to the south west.

LNRC061 and LNRC062 both intersected bedrock gold mineralisation, with LNRC062 also intersecting a 30m wide interval of low grade (<0.5g/t Au) between 42m and 74m indicating that the mineralisation extends 120m to the north east, beyond the discovery area and the area where the granite contact has been intersected in RC and aircore drilling. The mineralised intersections in LNRC061 and LNRC062 extend the Gidgee target to more than 300m of strike.

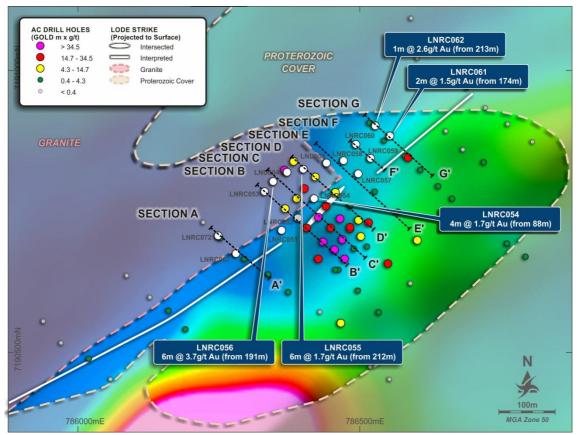


Figure 2 Gidgee Flat collar location plan on background aeromagnetic image.

LNRC054 intersected a wide zone of low grade mineralisation, generally less than 0.5g/t Au at the

target depth between 90m to 120m. LNRC055 deviated from the planned trajectory and did not effectively test the target at a depth of 200m, the results are consistent with those reported from LNRC040 (1m at 10.7g/t Au from 203m and 3m at 3.0g/t Au from 215m, see Lodestar's ASX announcement dated 22^{nd} May 2018).

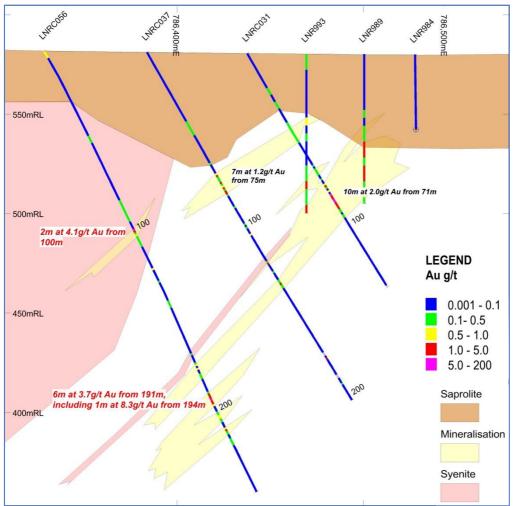


Figure 3 Gidgee Flat cross section (C-C') looking north east, LNRC056.

CONTESSA

Results have been received for the final 3 remaining holes from the recent program. Holes LNRC050 and LNRC063 were drilled 40m north east of the high grade intersection in LNRC026 (see Lodestar's ASX announcement dated 12th June 2108) but stopped short of the planned depth due to drilling difficulties. LNRC064 was drilled 80m northeast of LNRC026 (see Figure 4). No holes reported significant assay results.

Figure 4 Contessa collar location plan, showing LNRC050, LRC063 and LNRC064 collars as blue dots. Background aeromagnetic image.

CONCLUSION OF NED'S CREEK PROGRAM

The 2018 RC drilling programs have extended the Gidgee Flat and Central Park discoveries of 2017 and confirm the granite – syenite contact as the site of significant gold mineralisation, consistent with Lodestar's intrusion-related gold exploration model. At Contessa, the presence of widespread gold mineralisation, with locally extremely high-grades, will require follow up drilling to evaluate the large shear zone that defines the granite contact, a key control at Central Park and Gidgee Flat.

The focus for the next phase of work will be to locate structural settings where mineralisation is concentrated. An IP geophysical survey is planned for the main prospect areas where the effectiveness of the technique can be determined before extending geophysical exploration over the large untested areas of the contact. The results of the IP and on-going review of the large amount of geochemical and geological data acquired during 2018 will define the targets for the next major program of RC drilling.

AIRCORE PROGRAM

A reconnaissance aircore drilling program commenced on the Yowereena JV tenements (LSR 80%:VAN 20%) targeting several large multi-element geochemical anomalies coincident with major structural corridors (see Figures 5 and 6). The program has been halted temporarily because the drilling rig was not able to maintain sample integrity under the conditions encountered. The program will resume at the start of the field season once another drilling contractor has been engaged.

The program was designed to test extensive gold +/- arsenic-bismuth-lead anomalies defined by Homestake Gold basement-cover interface sampling. Initial drilling was to be carried out on 100m by 400m or 800m hole spacing.

Only 11 of the 77 planned holes were completed (see Figure 6 and Table 2). The first traverse drilled at the eastern end of a 1km anomaly has encountered 1m of massive pyrite from 104m, with associated quartz veining in hole LNR1109. The significance of this intersection will await assay results but it further confirms widespread sulphidation along the major deformation zone located on the southern margin of the Marymia Inlier.

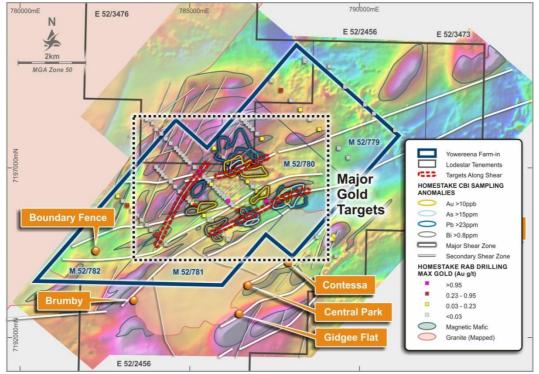


Figure 5 Completed aircore drilling (white dots) on aeromagnetic RTP 1VD image, showing multi-element geochemical targets.



Figure 6 Cover-basement interface geochemical anomalies targeted by aircore drilling. Background RTP-1VD aeromagnetic image.

Table 1 Significant Assay Results >1.0g/t Au.

				Total						Au
HoleID	Easting	Northing	RL	Depth	DrillType	Dip	Azimuth	From	То	g/t
LNRC054	786420.1	7190773	569.2	174	RC	- 58.46	130.98	88	92	1.74
								114	115	1.35
LNRC055	786399.9	7190825	569.6	252	RC	- 60.87	132.35	32	36	5.38
								96	100	5.6
								205	206	1.32
								206	207	4.84
								212	213	4.48
								213	214	1.96
								216	217	1.66
								217	218	1.65
LNRC056	786346.7	7190803	569.4	246	RC	- 60.17	129.63	100	101	7.11
								101	102	1.19
								191	192	3.67
								192	193	1.46
								193	194	1.68
								194	195	8.35
								195	196	4.75
								196	197	2.29
								211	212	1.47

HoleID	Easting	Northing	RL	Total Depth	DrillType	Dip	Azimuth	From	То	Au g/t
LNRC061	786554	7190884	570	213	RC	- 59.48	130.36	174	175	1.63
								175	176	1.51
LNRC062	786528	7190901	570.5	246	RC	-59.2	130.96	72	73	1.18
								213	214	2.64

Table 2 Aircore drill hole details.

HoleID	Easting	Northing	RL	TotalDepth	DrillType	Dip	Azimuth
LNR1104	788303	7194109	571	42	AC	-90	0
LNR1105	788244	7194169	571	91.3	AC	-90	0
LNR1106	788190	7194217	594	89	AC	-90	0
LNR1107	788138	7194256	561	95	AC	-90	0
LNR1108	788082	7194297	573	66	AC	-90	0
LNR1109	788041	7194337	566	108	AC	-90	0
LNR1110	787137	7193071	579	24	AC	-90	0
LNR1111	787074	7193127	570	24	AC	-90	0
LNR1112	786998	7193194	578	62	AC	-90	0
LNR1113	787041	7193166	580	54	AC	-90	0
LNR1114	786926	7193262	579	44	AC	-90	0

ANNEXURE

HoleID	Easting	Northing	RL	Total Depth	DrillType	Dip	Azimuth	From	То	Au g/t
LNRC050	788111.7	7192434	562.29	138	RC	-60	130	88	92	0.111
								92	96	0.217
LNRC054	786420.1	7190773	569.19	174	RC	-58.46	130.98	56	60	0.435
								68	72	0.508
								72	76	0.139
								88	92	1.74
								92	96	0.778
								113	114	0.372
								114	115	1.35
								115	116	0.208
								116	117	0.138
								117	118	0.369
								118	119	0.558
								119	120	0.175
								123	124	0.102
								128	129	0.34
								129	130	0.146
								130	131	0.131
								131	132	0.178
LNRC055	786399.9	7190825	569.55	252	RC	-60.87	132.35	24	28	0.175
								28	32	0.378
								32	36	5.38
								36	40	0.775
								40	44	0.334
								68	72	0.158
								96	100	5.6
								100	104	0.205
								104	108	0.397
								108	112	0.475
								112	116	0.215
								116	120	0.175
								120	121	0.156
								121	122	0.144
								142	143	0.225
								143	144	0.778
								163	164	0.181
								176	177	0.573
								186	187	0.372
								192	193	0.105
								194	195	0.117
								196	197	0.233

HoleID	Easting	Northing	RL	Total Depth	DrillType	Dip	Azimuth	From	То	Au g/t
								198	199	0.688
								199	200	0.114
								204	205	0.148
								205	206	1.32
								206	207	4.84
								207	208	0.592
								211	212	0.584
								212	213	4.48
								213	214	1.96
								214	215	0.479
								215	216	0.201
								216	217	1.66
								217	218	1.65
								218	219	0.698
								219	220	0.252
								220	221	0.12
								221	222	0.224
								222	223	0.351
								223	224	0.421
								224	225	0.265
								225	226	0.11
								226	227	0.351
								227	228	0.257
								228	229	0.246
								230	231	0.188
								232	233	0.167
								239	240	0.876
								240	241	0.411
								241	242	0.293
								242	243	0.106
								243	244	0.11
								246	247	0.147
								249	250	0.273
LNRC056	786346.7	7190803	569.44	246	RC	-60.17	129.63	0	4	0.539
								48	52	0.107
								84	88	0.321
								88	92	0.23
								92	96	0.309
								100	101	7.11
								101	102	1.19
								102	103	0.327
								103	104	0.864

HoleID	Easting	Northing	RL	Total Depth	DrillType	Dip	Azimuth	From	То	Au g/t
								104	105	0.263
								105	106	0.11
								106	110	0.175
								122	123	0.545
								129	130	0.114
								140	144	0.267
								169	170	0.197
								174	175	0.229
								175	176	0.958
								177	178	0.611
								180	181	0.14
								181	182	0.248
								182	183	0.42
								190	191	0.483
								191	192	3.67
								192	193	1.46
								193	194	1.68
								194	195	8.35
								195	196	4.75
								196	197	2.29
								197	198	0.61
								201	202	0.205
								202	203	0.334
								203	204	0.651
								204	205	0.913
								205	206	0.414
								206	207	0.111
								210	211	0.619
								211	212	1.47
								212	213	0.111
								213	214	0.119
								216	217	0.447
								217	218	0.262
								218	219	0.309
								219	220	0.471
LNRC061	786554	7190884	569.98	213	RC	-59.48	130.36	174	175	1.63
								175	176	1.51
								176	177	0.145
								204	206	0.389
LNRC062	786528	7190901	570.5	246	RC	-59.2	130.96	42	43	0.209
								43	44	0.133
								44	46	0.107

HoleID	Easting	Northing	RL	Total Depth	DrillType	Dip	Azimuth	From	То	Au g/t
								46	47	0.217
								47	48	0.523
								52	56	0.337
								56	60	0.187
								60	63	0.195
								65	68	0.152
								68	72	0.375
								72	73	1.18
								73	74	0.145
								213	214	2.64
								214	215	0.11
LNRC063	788085.8	7192458	562.38	144	RC	-60	130	116	120	0.173
LNRC064	788160.6	7192448	561.96	186	RC	-59.4	130.49	66	67	0.885
								67	68	0.247
								71	72	0.305

Contacts

Bill Clayton

Managing Director info@lodestarminerals.com.au +61 8 9435 3200

Media enquiries

Michael Vaughan, Fivemark Partners michael.vaughan@fivemark.com.au +61 422 602 720

About Lodestar

Lodestar Minerals is an active Western Australian gold explorer with a prospective tenement package spanning more than 2,000km² at the edge of the Pilbara and Yilgarn Cratons. Lodestar has three main projects – Ned's Creek, Camel Hills and Imbin – and has an 80% interest in the Yowereena gold project which is adjacent to Ned's Creek.

Lodestar's main focus is Ned's Creek where it was first to identify the potential for syenite intrusionrelated gold mineralisation within a craton margin setting and subsequently has made greenfields gold discoveries at the Contessa and Gidgee Flat prospects. Contessa is one of many partly explored gold anomalies located within a large shear zone developed along the southern margin of a 6 kilometre long, elongate composite granite intrusion. The Yowereena gold project provides Lodestar with access to the unexplored northern margin of the Contessa granite and under-explored prospective Archaean greenstone terrane within a region of major gold endowment and production.

Competent Person Statement

The information in this report that relates to Exploration Results is based on information compiled by Bill Clayton, Managing Director, who is a Member of the Australasian Institute of Geoscientists and has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Clayton consents to the inclusion in this report of the matters based on the information in the form and context in which it appears.

The information in this announcement that relates to previously released exploration results was disclosed under JORC 2012 in the ASX announcements dated

9th May 2018 "First RC Results from Gidgee Flat Extend Gold Discovery".

- 22nd May 2018 "Outstanding RC Drill Results at Gidgee Flat and Contessa".
- 27th July 2018 "June 2018 Quarterly Activities Report".

These announcements are available to view on the Lodestar website. The company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement. The company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

JORC Code, 2012 Edition

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 RC holes were sampled at 1m intervals throughout, with 4m composites also collected through weathered or less altered material. Samples collected from the cyclone were laid in plastic bags in sequence on the ground in rows of 20. Aircore drill holes were sampled at 1m intervals from a cyclone on the rig and laid on the ground in sequence. From 0m to end of hole 1m samples were composited to 4m intervals and a 2.5kg sample is submitted for assay. Sample representivity is maintained by placing the samples in a pre-numbered calico bag with a corresponding sample book entry. Certified reference materials, field duplicates and laboratory repeat samples are analysed routinely. 1m RC samples were collected as a 2.5kg split in calico bags attached to the on-board cone splitter. Composite 4m metre samples were collected by spearing down the side of the plastic bag using a PVC spear and combined to create a 2.5 to 3.0kg composite sample. 4m composite aircore samples were obtained by PVC spear across the 1m sample piles. Approximately 2.5kg of material from RC chips was submitted to a commercial laboratory for drying, crushing, and pulverising to produce a 40g charge for fire assay of gold and determination of sulphur by LECO furnace.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 RC drilling using a 5.5" face sampling hammer. Aircore drilling used a 90mm blade bit to refusal. RC holes were surveyed with a REFLEX EZ-GYRO north-seeking gyro survey tool at 30m intervals and at end of hole.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Sample recoveries and wet samples were monitored and recorded qualitatively in Lodestar's drill hole database. Recoveries were generally 80 -100%. Aircore drilling encountered wet ground conditions, affecting sample representivity. However the purpose of the aircore drilling is to identify bedrock geochemical anomalies and not quantify metal content. High pressure air used to maintain a dry sample and drill sampling equipment was cleaned regularly to minimise contamination. No relationship between sample recovery and grade has been established.

Criteria	JORC Code explanation	Commentary
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Chip samples were routinely geologically logged throughout the hole. Logging is qualitative in nature. All RC holes are geologically logged in full.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Individual 1m RC split samples collected from the cone splitter are submitted for assay. Selected intervals were composited from bagged 1m samples to produce a 2.5kg 4m composite using a PVC spear. All samples for assay are stored in pre-numbered bags and submitted to Bureau Veritas Laboratories for sample preparation and analysis. Sample preparation for drill samples involves drying the whole sample, crushing to 3mm and pulverising to 90% passing -75 microns. The pulverised sample was split with a rotary sample divider to obtain a 40 gram charge. Duplicate field samples, certified reference standards and laboratory repeats are used to monitor satisfactory reproducibility. Sample size is appropriate for early exploration drilling where mineral grainsize is unknown.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Following sample preparation a 40 gram charge was submitted for fire assay (with ICP-AES finish); the detection limit is 1ppb. 1:20 duplicate samples retained for analysis after fine crushing. 1:20 pulverised samples analysed for satisfactory grind size. The fire assay method is considered an estimation of total gold content. No geophysical tools were used to determine any element concentrations. Laboratory QAQC includes the use of laboratory standards and replicates; Review of Lodestar's reference standards and field duplicates indicate acceptable accuracy and precision.

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to access data 	 Significant intersections have not been independently validated at this time. Twinned holes were not included in this program. Field and laboratory data are collected electronically and entered into a relational database. Data collection protocols are recorded in Lodestar's operation manual.
	Discuss any adjustment to assay data.	 There has been no adjustment to assay data. Reported intersections use a 0.5g/t Au lower cut- off and up to 2m of internal dilution
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill hole locations have been surveyed with DGPS or GPS in the case of aircore drilling. Drill hole coordinates were recorded in MGA94 Zone 50 grid. The topography within prospect areas is generally flat; In the Contessa and Gidgee Flat areas drill hole collar RL's have been adjusted to the DEM surface derived from a detailed aeromagnetic survey using Bendix/King radar altimeter equipment with a resolution of 0.3m and recorded from the DGPS collar pick-up.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been 	 Drill holes at Contessa were placed at a nominal hole spacing of 50m (north-south) and 40m (eastwest) and at Gidgee Flat 50m (north-south) and 30m (east-west). The drilling subject of this announcement has not been used to prepare Mineral Resource estimates at this stage.
Orientation of data in relation to geological structure	 applied. Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Compositing has been applied for the RC samples. At Gidgee Flat the target mineralisation is believed to dip towards grid north at approximately 70 degrees, indicating intersection widths are around 1.5 times true thickness. RC and diamond holes are oriented perpendicular to the regional strike of stratigraphy. At Contessa the target mineralisation is also believed to dip towards the north, based on limited diamond drilling, but awaits confirmation from additional drilling. No orientation based sampling bias has been identified in the data.
Sample security	• The measures taken to ensure sample security.	 Samples were stored at Lodestar's exploration camp in sealed bags under supervision prior to dispatch by Lodestar contractors and registered courier to Bureau Veritas - UltraTrace Laboratories.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	No audits or reviews have been carried out.

Criteria	Commentary
Mineral tenement and land tenure status	 Contessa and Gidgee Flat are located on E52/2456, within Lodestar's Ned's Creek project. The tenement is owned by Audacious Resources, a wholly-owned subsidiary of Lodestar Minerals and expires on 16/09/2020. The tenement is within the native title claim WC99/46 of the Yugunga-Nya Group. Lodestar has signed a Heritage Agreement with the traditional owners to carry out mineral exploration on the tenement. Yowereena - Contessa may extend into M52/780 and aircore drilling was carried out on M52/780 and M52/781. The tenements on which the historic exploration was completed and in which Lodestar has earned an 80% interest are held by Vango Mining Limited and Dampier (Plutonic) Pty Ltd (a wholly-owned subsidiary of Vango Mining Limited). M52/780 expires on 26/09/2034 (VANGO 60/100:DAMPIER 40/100). M52/781 expires on 30/12/2036 (DAMPIER (PLUTONIC) PTY LTD 100/100) Lodestar has earnt an 80% interest in M52/780 and M52/781. M52/780 and M52/781 are located within the Yugunga Nya people native title claim WAD6132/1998.
Exploration done by other parties	 Exploration commenced at McDonald Well in the late 1960's, WMC explored for Zambian Copper Belt style mineralisation and completed regional geological mapping and sampling, followed by minor percussion drilling. CRA Exploration completed regional mapping and auger sampling, also at McDonald Well. No significant anomalies were identified on the tenements. Minor exploration drilling by Barrick and CRA Exploration east and south of Contessa intersected ultramafic lithologies, confirming the extent of the greenstone sequence in this area. There has been no material exploration by other parties over the Contessa area. Gold exploration in the Plutonic Well greenstone belt commenced in 1986. Marymia
	Exploration, in their 1994 report, state that there had been little or no previous exploration within the Yowereena tenements.
Geology	• The geology of the project area comprises the northern margin of the Proterozoic Yerrida Basin. The geology forms two discrete terranes; Proterozoic sediments of the Yerrida Basin that are prospective for sediment-hosted copper and base metal mineralisation in black shale and carbonate sequences, with evidence of secondary and primary copper mineralisation in the Thaduna district, overlie Archaean basement rocks on the northern margin of the Yerrida Basin. The basement-sediment contact trends east-west and Lodestar's exploration has identified extensive gold anomalism adjacent to this contact. The basement consists of granite and fringing mafic to intermediate and ultramafic rocks that are not well exposed at surface. The mafic-ultramafic rocks and the adjacent granite that hosts gold mineralisation are thought to be Archaean in age but may be part of the Glenburgh orogenic event along the northern Yilgarn margin. Identification of syenite-hosted, intrusion-related gold mineralisation indicates that this region differs from other lode gold occurrences in the Plutonic Well greenstone belt and the surrounding Proterozoic fold belt and does not form part of the adjacent Marymia Inlier.
Drill hole information	 Tabulated data is provided in Tables 1 and 2 and the Annexure.
Data aggregation methods Relationship between mineralisation widths and intercent	 Assay data are reported as individual 1 metre or 4 metre composites for RC samples. Selected RC intervals are reported as aggregates of individual 1m samples in zones where mineralisation was observed. Drilling was oriented towards 130 degrees, perpendicular to the regional strike of stratigraphy. Measurement of foliation in the area indicates steep dips however mineralisation appears to dip moderately to steeply to the north. The actual dip of mineralisation and its relationship to the drill hole intersections has not been confirmed at
widths and intercept lengths Diagrams	Contessa and at Gidgee Flat is estimated to be 70% of true width.See Figures 2 to 4.
Diagrams	 Jee Figures 2 t0 4.

Balanced reporting	All drill holes are reported in the Annexure.
Other substantive exploration data	None to report.
Further Work	 Contiguous supergene and transition zone gold mineralisation was intersected by aircore drilling. RC drilling confirmed a bedrock source, extended the mineralisation and demonstrated a spatial association with the granite contact at Gidgee Flat and a major shear zone on the granite contact at Contessa. Diamond drilling has confirmed the potential for high-grade gold in shoots and lenses associated with the contact between syenite intrusives and altered mafic host rocks at Gidgee Flat and within intensely altered diorite at Contessa. Additional drilling is required to scope mineralisation and define a potential resource.