

High-Grade Initial Drilling Intersections from Ned's Creek

Western Australian gold explorer Lodestar Minerals Limited (**ASX: LSR**) ("Lodestar" or "the Company") advises that promising results have been received from the Contessa prospect (within the Ned's Creek Project), currently the focus of drilling by joint venture partner, Vango Mining Ltd ("Vango"). A copy of an announcement made today by Vango is attached to, and form part of this release. Vango is spending \$5 million over a 3 year period to earn a 51% interest in the Neds Creek Project.

Key highlights from the release made by Vango are as follows:

- RC drilling at the Contessa prospect has returned the following significant intersections directly up-plunge and south west from Lodestar's previously reported bonanza gold intersection in LNRC026¹
 - $\circ~$ 16m @ 2.16g/t Au from 84m, including 4m @ 9.63g/t Au in VCTRC0003 and
 - 5m @ 2.42g/t Au from 46m, including 2m @ 4.94g/t Au in VCTRC0002
- These results advance the primary objective of defining a maiden resource for Contessa, located 25km from Vango's adjacent Marymia Gold Project.
- A resumption of RC drilling, targeting oxide and down-plunge extensions to the Contessa mineralisation to define potential open-pit and underground resources, is planned once cyclone-related weather events allow.
- Up to **0.46% copper, 2% lead and 0.33% zinc,** also reported from VCTRC0003, highlights the potential for volcanic hosted massive sulphide style or other base metal mineralisation at Ned's Creek.
- First-pass drilling on the northern contact of the granite intersected anomalous gold and a coincident nickel-copper anomaly within ultramafic rocks. The drill results demonstrate significant potential for gold and base metals, including nickel sulphides, within the greenstone margin and in-fill and extension drilling is planned.

ENDS

PO Box 584 Nedlands, WA 6959 ABN: 32 127 026 528

¹ See Lodestar's ASX announcement dated 22nd May 2018.

Contacts

Bill Clayton

Managing Director info@lodestarminerals.com.au +61 8 9435 3200

Media enquiries

Michael Vaughan, Fivemark Partners michael.vaughan@fivemark.com.au +61 422 602 720

Competent Person Statement

The information in this report that relates to Exploration Results is based on information compiled by Bill Clayton, Managing Director and shareholder of Lodestar Minerals, who is a Member of the Australasian Institute of Geoscientists and has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Clayton consents to the inclusion in this report of the matters based on the information in the form and context in which it appears.

The information in this announcement that relates to previously released exploration results was disclosed under JORC 2012 in the ASX announcements dated

• 22nd May 2018 "Outstanding RC Drill Results at Gidgee Flat and Contessa".

These announcements are available to view on the Lodestar website. The company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement. The company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

ASX Announcement 10 February 2020

DRILLING CONFIRMS HIGH-GRADE RESOURCE POTENTIAL AT NED'S CREEK

Further drilling planned to test extent of high-grade resource target

- Vango's initial drilling programme at the Contessa Prospect, Ned's Creek Farm-In Project, confirms high-grade resource potential. Significant intersections include:
 - 16m @ 2.16 g/t Au from 84m including 4m @ 9.63 g/t Au in VCTRC0003
 - 5m @ 2.42 g/t Au from 46m including 2m @ 4.94 g/t Au in VCTRC0002
- These intersections represent extensions (and confirmation) of high grade mineralisation intersected by Lodestar Minerals previously (eg. 4m @ 78.1 g/t Au from 140m in LNRC026¹), open down-plunge to the northeast, where further drilling is planned
- In addition, copper-lead-zinc mineralisation intersected in a black shale/sulphide zone at Contessa, including up to 0.46% copper, 2% lead and 0.33% Zn in VCTRC0003, highlights potential for volcanic hosted massive sulphide (VHMS) copper-lead-zinc mineralisation at Ned's Creek
- Aircore/RC drilling, approximately 2km from the Contessa Prospect, also on the Ned's Creek Farm-In Project, intersected anomalous gold as well as coincident nickel-copper indicative of ultramafic rocks with potential nickel sulphides
- Follow-up drilling is planned to test for extensions of the Contessa high-grade mineralisation with potential to define both open-pit and underground resources and form part of the proposed Mineral Resource upgrade for the Marymia Gold Project

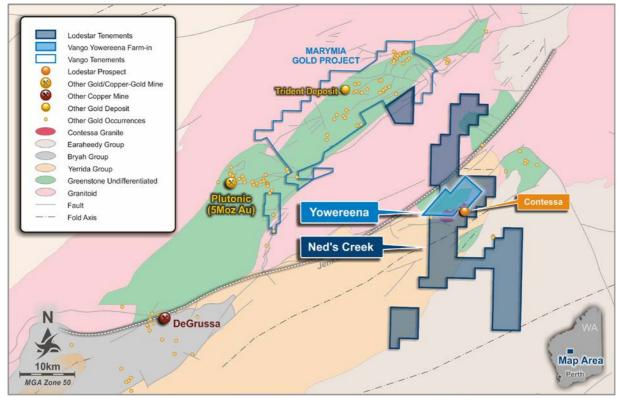


Figure 1: Ned's Creek tenements, including Contessa prospect location, adjacent to Marymia Gold Project

1

ABN: 68 108 737 711 SUITE 3542 LEVEL 35 TOWER ONE, BARANGAROO INTERNATIONAL TOWERS 100 BARANGAROO AVENUE SYDNEY NSW 2000

http://www.vangomining.com

Gold exploration and development company Vango Mining Ltd ("Vango" or "the Company", ASX:VAN) is pleased to report results from its initial drill programme at the Ned's Creek Project, where Vango is earning a 51% interest from Lodestar Minerals Limited ("Lodestar", ASX:LSR).

The results enhance the potential of the Ned's Creek Project, which adjoins Vango's 100%-owned Marymia Gold Project, 300km northeast of Meekatharra in the Mid-West region of Western Australia (Figure 1).

Details of the Farm-in Agreement are noted in the Company's ASX announcement dated 1 May 2019.

Contessa Prospect

Five reverse circulation (RC) drillholes for 786m were completed at Contessa (Figures 2 and 3), testing extensions of intersected high-grade gold mineralisation previously intersected by Lodestar. Significant results of the Vango programme include the following significant intersections (>2 g/t if <100m):

- 16m @ 2.16 g/t Au from 84m including 4m @ 9.63 g/t Au in VCTRC0003
- 5m @ 2.42 g/t Au from 46m including 2m @ 4.94 g/t Au contained within a broader relatively shallow intersection of 27m @ 1.05 g/t Au from 46m in VCTRC0002

These new intersections, from relatively shallow depth, confirm the continuity of a high-grade zone or "shoot" of gold mineralisation on five, 40m spaced, sections (29,600mN to 29,760mN) up-plunge and to the southwest of previous drilling that include high-grade intersections produced by Lodestar previously, on section 29,760mN:

- 4m @ 78.1 g/t Au from 140m including 3m @ 102.5 g/t Au¹ in drillhole LNRC026, and,
- 5.1m @ 28.1 g/t Au from 143m including 1m @ 134 g/t Au g/t in diamond drillhole LND003¹

This high-grade zone is associated with a flexure in a moderate northwesterly dipping shear zone in intermediate volcanics, with mafic rocks in the footwall (cross section 29,720mN, Figure 4), located on the southern margin of an interpreted Syenite intrusion ("Contessa Granite", Figures 1 and 2).

The shallow depth of the intersections announced today suggests potential for open-pit resource definition as well as for high-grade underground extensions associated with a potential high-grade zone that is open down plunge to the northeast. Additional drilling is planned as soon as access is re-established following recent cyclone related rain events.

In addition to the high-grade gold intersection produced by the RC drilling at Contessa, a zone of copper-lead-zinc (Cu-Pb-Zn) mineralisation, **including up to 0.46% Cu and 2% Pb**, was intersected in hole **VCTRC0003**, associated with a sulphidic black shale unit (refer cross-section, Figure 4). The intersection based on XRF scanning of pulps included:

- 3m @ 0.22% Cu, 1.42% Pb, 0.39% Zn from 116m inc. 1m @ 0.46% Cu, 2.05% Pb, 0.33% Zn

Elevated Cu-Pb-Zn was also noted in other RC holes (refer Appendix 1). The location of recent drillholes completed at Ned's Creek is shown on Figures 2 and 3. Table 1 contains significant intersections, Table 2 contains drillhole details, Appendix 1a contains all significant assays.

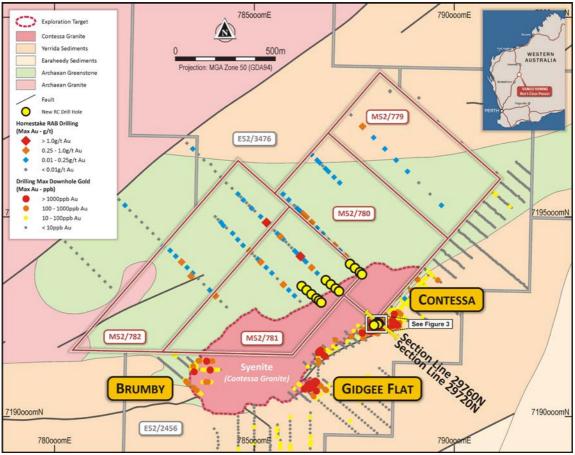


Figure 2: Ned's Creek tenements with drilling showing key cross section locations at Contessa Prospect

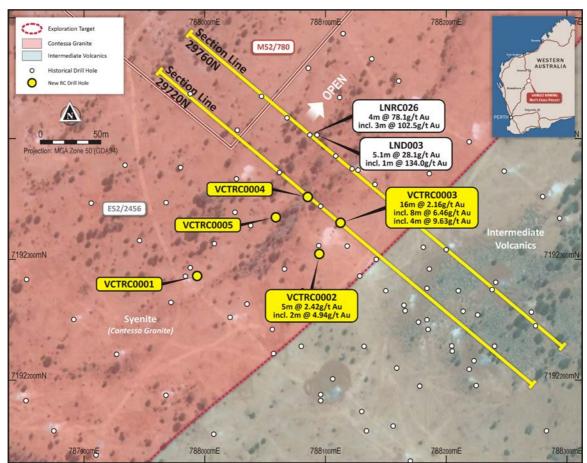


Figure 3: Ned's Creek Contessa Prospect, drillhole Locations and peak drilling intersections

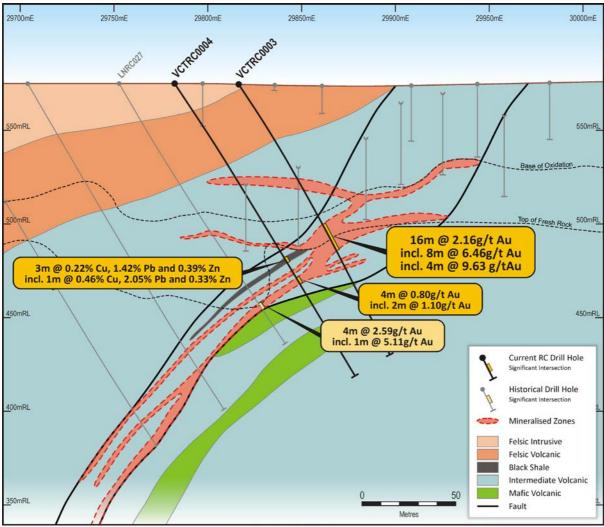


Figure 4: Ned's creek, Contessa Prospect, cross section 29,720mN

Prospect	Hole ID	Section N	From	То	m	g/t Au	Cut off
Contessa	VCTRC0001	29610	29	31	2	1.53	1.0 g/t
	VCTRC0001		46	48	2	0.66	0.5 g/t
Contessa	VCTRC0002	29690	46	73	27	1.05	0.5 g/t
	VCTRC0002	29690	46	51	5	2.42	0.5 g/t
	incl.		47	49	2	4.94	3.0 g/t
	VCTRC0002	29690	60	63	3	1.82	0.5 g/t
	incl.		60	61	1	4.56	3.0 g/t
	VCTRC0002	29690	66	73	7	1.28	0.5 g/t
	incl.		71	72	1	2.74	2.0 g/t
Contessa	VCTRC0003	29720	56	64	8	0.81	0.5 g/t
	VCTRC0003	29720	84	100	16	2.16	0.5 g/t
	incl.		84	88	4	9.63	3.0 g/t
Contessa	VCTRC0004	29720	56	60	4	1.25	1.0 g/t
	VCTRC0004	29720	120	124	4	0.80	0.5 g/t
	incl.		122	124	2	1.10	1.0 g/t
Contessa	VCTRC0005	29690	92	104	12	0.59	0.5 g/t
	Incl.		101	103	2	1.04	1.0 g/t

Yowereena Drilling

An initial programme of 14 wide-spaced AC/RC holes, also on the Yowereena tenements (Farm-in Agreement with Lodestar), for 875m was completed on 3 approximately 500m spaced sections across the granite/greenstone contact opposite the Contessa Prospect (Figures 2 and 5).

Anomalous results of up to 4m @ 0.14 g/t Au from 8m and 4m @ 0.18 g/t Au from 56m in hole VYWRC0012 confirm the gold exploration potential across this granite/greenstone contact.

In addition, highly anomalous copper (Cu) with nickel (Ni) was intersected in VYWRC0009 including a **20m zone from 4m depth of 281ppm Cu, 460ppm Zn and 1199ppm (0.12%) Ni with supporting 1524ppm (0.15%) Chrome (Cr) and 15% Iron (Fe)**. This result indicates that an ultramafic unit has been intersected close to the Contessa granite contact, with highly anomalous nickel and supporting copper and zinc, potentially indicative of sulphide Ni at depth.

Further, infill and extension, drilling will be proposed to define the anomalous zones for both gold and other elements such as copper and nickel.

The location of recent drillholes completed at Yowereena is shown on Figures 2, and 5 below. Appendix 1b contains all significant analytical results.

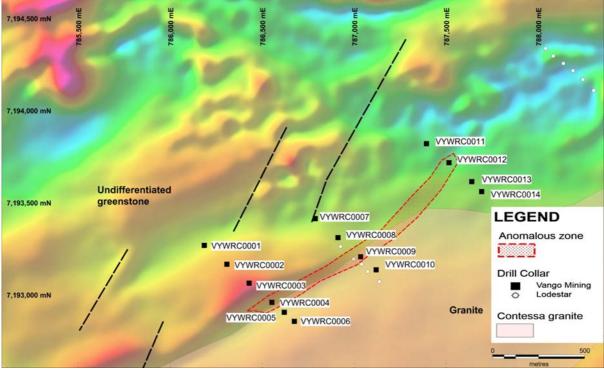


Figure 5: Yowereena Project, Aircore/RC drilling across the Contessa Granite/greenstone contact

About Contessa and the Ned's Creek JV

Vango has entered into a Farm-In and Joint Venture Agreement (Ned's Creek Agreement) with Lodestar whereby Vango may earn a 51% interest in the Ned's Creek tenements (including the Yowereena JV – refer Figure 1) by expending \$5 million on exploration over a three-year period. Upon Vango earning 51%, should Lodestar elect not to form a contributing JV, Vango may increase its interest in the Ned's Creek JV to 80% and Lodestar may revert to a 20% "free carried" interest.

Previous drilling of the **Contessa Prospect** by Lodestar (LSR release 12 June 2018) delivered multiple high-grade gold results within an approximately 400m strike length zone on the southeast margin of an intrusive Syenite ("Contessa Granite" - Figure 2). This includes very high-grade intersections on section 29,760mN (Figure 6).

- 4m @ 78.1 g/t Au from 140m including 3m @ 102.5 g/t Au¹ in drillhole LNRC026, and,
- 5.1m @ 28.1 g/t Au from 143m including 1m @ 134 g/t Au g/t Au¹ in diamond drillhole LND003

Open pit potential has also been identified, around previous shallow intersection:

- 21m @ 3.0 g/t Au from 40m incl. 1m @ 13.1 g/t Au in LNR656¹ section 29690mN.

Other key high-grade gold prospects around the margin of the highly prospective Syenite unit will also be reviewed, including **Gidgee Flat** and **Brumby** (refer Figure 2). Syenites are associated with major gold deposits in other parts of the Yilgarn Craton, including the world-class Wallaby gold deposit in the Laverton District.

The Contessa Prospect is located 20 to 25km to the southeast of Vango's Marymia Gold Project and drilling will focus on resource definition to add to the inventory available to support a proposed standalone, high-grade, gold mining and processing operation (refer ASX announcement 18 April 2019).

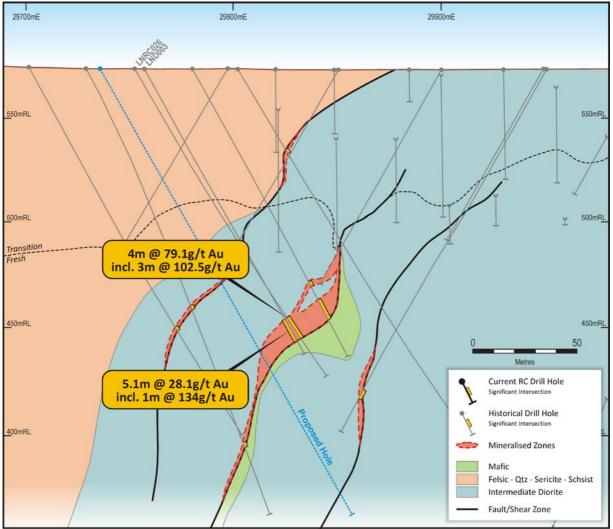


Figure 6: Ned's creek, Contessa Prospect, cross section 29,760mN

Prospect	Hole ID	Drill Type	MGA East	MGA North	RL	Grid East	Grid North	Depth (m)	Dip°	Azi°
CONTESSA	VCTRC0001	RC	787993.7	7192286.3	572.2	29756	29610	120	-61	127
CONTESSA	VCTRC0002	RC	788094.8	7192304.5	571.9	29822	29689	150	-61	128
CONTESSA	VCTRC0003	RC	788112.4	7192330.3	571.9	29819	29720	162	-58	128
CONTESSA	VCTRC0004	RC	788085.3	7192351.7	572.2	29784	29719	167	-57	129
CONTESSA	VCTRC0005	RC	788058.9	7192334.8	572.5	29775	29689	174	-60	131
YOWEREENA	VYWRC0001	RC	786185.2	7193268.3	581.6	27739	29200	48	-60	130
YOWEREENA	VYWRC0002	RC	786308.1	7193166.1	581.3	27899	29201	42	-61	132
YOWEREENA	VYWRC0003	RC	786429.7	7193063.6	580.2	28058	29200	66	-62	129
YOWEREENA	VYWRC0004	RC	786552.5	7192959.2	579.0	28220	29199	72	-60	133
YOWEREENA	VYWRC0005	RC	786675.3	7192856.0	577.6	28380	29199	72	-61	131
YOWEREENA	VYWRC0006	RC	786620.3	7192905.8	578.3	28306	29202	66	-62	128
YOWEREENA	VYWRC0007	RC	786788.7	7193414.0	578.8	28108	29700	48	-61	131
YOWEREENA	VYWRC0008	RC	786912.4	7193310.7	577.9	28269	29700	72	-61	128
YOWEREENA	VYWRC0009	RC	787034.9	7193206.8	577.4	28430	29699	72	-62	128
YOWEREENA	VYWRC0010	RC	787119.1	7193135.7	577.6	28540	29699	35	-59	131
YOWEREENA	VYWRC0011	RC	787393.0	7193820.7	575.3	28310	30400	42	-59	127
YOWEREENA	VYWRC0012	RC	787515.8	7193717.7	575.0	28470	30400	72	-59	130
YOWEREENA	VYWRC0013	RC	787639.1	7193614.7	574.6	28631	30400	78	-60	130
YOWEREENA	VYWRC0014	RC	787692.8	7193560.8	574.5	28706	30393	90	-60	130

Table 1 New Drillhole locations – Ned's Creek and Yowereena Tenements:

Previous releases referenced:

¹Vango Exercises Option – Ned's creek High-Grade Gold Project, ASX:17/07/2019

ENDS

For further information, please contact:

Bruce McInnes Executive Chairman Vango Mining Limited E: bamcinnes@vangomining.com T: +61 2 9251 6012 W: www.vangomining.com Media and Investor Inquiries: James Moses Mandate Corporate E: james@mandatecorporate.com.au T: +61 420 991 574

Competent Persons Statement

The information in this report that relates to exploration results has been reviewed, compiled and fairly represented by Mr Jonathon Dugdale, a Fellow of the Australian Institute of Mining and Metallurgy ("FAusIMM") and a full time employee of Discover Resource Services Pty Ltd, contracted to Vango Mining Ltd. Mr Dugdale has sufficient experience relevant to the style of mineralisation and type of deposits under consideration to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee ("JORC") Australasian Code for Reporting of Exploration Results, Minerals Resources and Ore Reserves. Mr Dugdale consents to the inclusion in this report of the matters based on this information in the form and context in which it appears.

Forward Looking Statements

Certain statements contained in this announcement, including information as to the future financial or operating performance of the Company and its projects, may be forward-looking statements that:

- may include, among other things, statements regarding targets, estimates and assumptions in respect of mineral reserves and mineral resources and anticipated grades and recovery rates, production and prices, recovery costs and results, capital expenditures, and are or may be based on assumptions and estimates related to future technical, economic, market, political, social and other conditions;
- are necessarily based upon a number of estimates and assumptions that, while considered reasonable by the Company, are inherently subject to significant technical, business, economic, competitive, political and social uncertainties and contingencies; and,
- involve known and unknown risks and uncertainties that could cause actual events or results to differ materially from estimated or anticipated events or results reflected in such forward-looking statements.

Appendix 1a: Significant Assays from Contessa - Key Intersections

Hole ID	Sample	From	То	Data	Au	Au1	Bi	Cu	Ni	Pb	Zn
VCTRC0001	5150273	28	29	INT	0.378		<6	9	17	32	7
VCTRC0001	5150274	29	30	INT	2.299		<6	<6	<6	31	8
VCTRC0001	5150275	30	31	INT	0.76		<6	<6	14	28	13
VCTRC0001	5150276	31	32	INT	0.233		<6	<6	13	25	11
VCTRC0001	5150293	45	46	INT	0.159		<6	<6	22	26	28
VCTRC0001	5150294	46	47	INT	0.624		<7	<7	44	23	41
VCTRC0001	5150294	40	48	INT	0.697		<7	<7	71	15	60
VCTRC0001	5150296	48	49	INT	0.203		<7	<7	53	12	57
VCTRC0001	5150250	57	58	INT	0.08		<7	133	117	7	317
VCTRC0001	5150309	58	59	INT	0.034		<7	90	96	8	283
VCTRC0001	5150310	59	60	INT	0.095		<6	79	240	6	481
VCTRC0001	5150311	60	61	INT	0.014		<6	83	208	<2	250
VCTRC0001	5150312	61	62	INT	0.063		<6	61	237	<2	249
VCTRC0001	5150312	62	63	INT	0.445		<6	82	249	4	237
VCTRC0001	5150314	63	64	INT	0.364		<7	102	245	<2	325
VCTRC0001	5150314	64	65	INT	0.156		<7	92	203	12	218
VCTRC0002	5150416	45	46	INT	0.175		<7	<7	47	27	48
VCTRC0002	5150417	46	47	INT	0.983		<6	<6	24	49	55
VCTRC0002	5150418	47	48	INT	5.295		<7	<7	39	38	70
VCTRC0002	5150419	48	49	INT	4.58		<7	<7	44	33	65
VCTRC0002	5150421	48	49	DUP	3.364		<7	<7	64	31	55
VCTRC0002	5150423	49	50	INT	0.64		<7	<7	50	35	63
VCTRC0002	5150424	50	51	INT	0.607		<7	<7	46	44	72
VCTRC0002	5150425	51	52	INT	0.211		<7	<7	60	60	91
VCTRC0002	5150426	52	53	INT	0.21		<7	<7	77	85	79
VCTRC0002	5150427	53	54	INT	0.077		<7	<7	58	89	87
VCTRC0002	5150428	54	55	INT	0.521		<7	<7	71	103	95
VCTRC0002	5150429	55	56	INT	0.096		<7	<7	68	74	84
VCTRC0002	5150430	56	57	INT	0.051		<7	<7	81	168	107
VCTRC0002	5150431	57	58	INT	0.163		<7	<7	69	58	92
VCTRC0002	5150432	58	59	INT	0.057		13	13	61	36	79
VCTRC0002	5150433	59	60	INT	0.357		<6	<6	23	52	50
VCTRC0002	5150434	60	61	INT	4.564		<6	<6	58	47	104
VCTRC0002	5150435	61	62	INT	0.171		<6	<6	62	28	108
VCTRC0002	5150436	62	63	INT	0.717		<7	<7	104	61	424
VCTRC0002	5150437	63	64	INT	0.124		<7	<7	245	52	493
VCTRC0002	5150438	64	65	INT	0.025		<7	<7	318	15	508
VCTRC0002	5150439	65	66	INT	0.094		<7	<7	287	27	464
VCTRC0002	5150441	65	66	DUP	0.068		<7	<7	305	29	496
VCTRC0002	5150443	66	67	INT	1.227		<7	<7	242	21	291
VCTRC0002	5150444	67	68	INT	0.857		<7	<7	231	15	308
VCTRC0002	5150445	68	69	INT	0.795		<7	<7	157	12	284
VCTRC0002	5150446	69	70	INT	1.224		<7	<7	96	33	129
VCTRC0002	5150447	70	71	INT	1.576		<7	<7	92	19	140
VCTRC0002	5150448	71	72	INT	2.744		<7	<7	98	19	93
VCTRC0002	5150449	72	73	INT	0.509		<7	<7	134	7	150
VCTRC0002	5150450	73	74	INT	0.089		<6	<6	141	4	203

Hole ID	Sample	From	То	Data	Au	Au1	Bi	Cu	Ni	Pb	Zn
VCTRC0002	5150451	74	75	INT	0.03		<7	85	167	<2	205
VCTRC0002	5150452	75	76	INT	0.035		<7	32	183	<2	233
VCTRC0002	5150527	138	139	INT	0.013		<8	52	91	93	238
VCTRC0002	5150528	139	140	INT	0.006		<8	58	93	107	290
VCTRC0002	5150529	140	141	INT	0.016		<7	28	85	30	258
VCTRC0002	5150530	141	142	INT	0.007		<8	33	67	55	437
VCTRC0003	5150551	32	36	INT	0.007		<7	206	122	85	265
VCTRC0003	5150552	36	40	INT	0.015		<7	169	214	53	505
VCTRC0003	5150553	40	44	INT	0.02		<8	180	385	<3	1133
VCTRC0003	5150554	44	48	INT	<0.005		<8	117	513	<4	1169
VCTRC0003	5150555	48	52	INT	0.008		14	85	476	34	837
VCTRC0003	5150556	52	56	INT	0.057		<8	<8	399	38	713
VCTRC0003	5150557	56	60	INT	0.734		16	16	291	17	550
VCTRC0003	5150558	60	64	INT	0.895		<8	<8	225	32	524
VCTRC0003	5150559	64	68	INT	0.052		19	96	240	9	471
VCTRC0003	5150561	64	68	DUP	0.051		20	86	235	11	445
VCTRC0003	5150563	68	72	INT	0.03		<7	73	231	9	326
VCTRC0003	5150564	72	76	INT	0.087		18	91	247	4	229
VCTRC0003	5150565	76	80	INT	0.018		19	72	405	6	370
VCTRC0003	5150566	80	84	INT	0.029		<7	63	235	9	222
VCTRC0003	5150567	84	88	INT	9.625	9.725	14	14	181	95	299
VCTRC0003	5150568	88	92	INT	3.287	3.067	<7	<7	101	168	201
VCTRC0003	5150569	92	93	INT	0.844		<7	<7	127	50	154
VCTRC0003	5150570	93	94	INT	0.335		<7	<7	115	31	126
VCTRC0003	5150571	94	95	INT	0.906		15	15	109	31	110
VCTRC0003	5150572	95	96	INT	2.025		17	17	141	119	157
VCTRC0003	5150573	96	97	INT	0.636		16	16	112	61	189
VCTRC0003	5150574	97	98	INT	0.205		<7	<7	123	113	191
VCTRC0003	5150575	98	99	INT	1.598		<7	<7	97	63	227
VCTRC0003	5150576	99	100	INT	0.504		<6	<6	78	216	177
VCTRC0003	5150577	100	101	INT	0.241		18	18	49	106	128
VCTRC0003	5150586	106	107	INT	1.011		<7	<7	78	45	171
VCTRC0003	5150589	109	110	INT	0.28		<8	<8	66	<3	106
VCTRC0003	5150590	110	111	INT	1.979		<8	<8	74	111	344
VCTRC0003	5150592	112	113	INT	0.095		21	81	101	109	568
VCTRC0003	5150593	113	114	INT	0.084		26	1169	120	481	940
VCTRC0003	5150594	114	115	INT	0.04		<8	338	84	1372	1405
VCTRC0003	5150595	115	116	INT	0.03		15	46	68	759	2516
VCTRC0003	5150596	116	117	INT	0.146		<16	912	100	14465	6271
VCTRC0003	5150597	117	118	INT	0.424		51	4607	49	20502	3253
VCTRC0003	5150598	118	119	INT	0.159		25	1186	90	7731	2068
VCTRC0003	5150599	119	120	INT	0.106		<9	311	117	2741	835
VCTRC0003	5150601	119	120	DUP	0.039		<8	149	76	1259	546
VCTRC0003	5150603	120	121	INT	0.022		25	108	34	1678	236
VCTRC0003	5150604	121	122	INT	0.033		19	459	87	1903	848
VCTRC0003	5150605	122	123	INT	0.03		<7	163	91	956	629
VCTRC0003	5150606	123	124	INT	0.023		<7	90	92	704	522
VCTRC0003	5150607	124	125	INT	0.025		21	233	109	674	498

Hole ID	Sample	From	То	Data	Au	Au1	Bi	Cu	Ni	Pb	Zn
VCTRC0003	5150608	125	126	INT	0.037		<7	211	85	552	284
VCTRC0003	5150609	126	127	INT	0.017		<7	45	90	272	292
VCTRC0003	5150610	127	128	INT	0.014		<7	44	98	476	406
VCTRC0003	5150611	128	129	INT	0.052		<7	55	100	360	357
VCTRC0003	5150612	129	130	INT	0.053		<7	112	86	776	486
VCTRC0003	5150613	130	131	INT	0.016		<7	42	97	167	286
VCTRC0003	5150614	131	132	INT	0.017		<7	50	100	123	311
VCTRC0003	5150615	132	133	INT	0.307		<7	64	101	637	593
VCTRC0003	5150616	133	134	INT	0.263		<7	48	84	137	327
VCTRC0004	5150663	36	40	INT	0.007		14	163	92	243	252
VCTRC0004	5150664	40	44	INT	0.006		<7	145	162	111	472
VCTRC0004	5150665	44	48	INT	< 0.005		<7	117	119	74	272
VCTRC0004	5150667	52	56	INT	0.019		<7	199	108	87	394
VCTRC0004	5150668	56	60	INT	1.25		13	13	86	64	253
VCTRC0004	5150672	72	76	INT	0.118		12	77	190	53	307
VCTRC0004	5150673	76	80	INT	0.023		<7	77	241	44	254
VCTRC0004	5150674	80	84	INT	0.023		<7	63	254	115	328
VCTRC0004	5150675	84	88	INT	0.124		<7	39	228	191	261
VCTRC0004	5150676	88	92	INT	0.243		<7	76	180	36	228
VCTRC0004	5150677	92	93	INT	0.148		<8	67	168	41	245
VCTRC0004	5150687	99	100	INT	1.371		<7	<7	125	8	102
VCTRC0004	5150694	106	107	INT	0.082		21	203	93	161	93
VCTRC0004	5150695	107	108	INT	0.255		33	810	112	187	96
VCTRC0004	5150707	116	117	INT	0.695		<7	<7	94	11	82
VCTRC0004	5150708	117	118	INT	0.07		<7	<7	88	5	96
VCTRC0004	5150709	118	119	INT	0.099		<7	<7	87	<2	79
VCTRC0004	5150710	119	120	INT	0.042		<8	<8	83	<3	75
VCTRC0004	5150711	120	121	INT	0.804		<7	<7	97	15	84
VCTRC0004	5150712	121	122	INT	0.22		<7	<7	71	7	79
VCTRC0004	5150713	122	123	INT	1.057		<7	<7	130	48	72
VCTRC0004	5150714	123	124	INT	1.134		<7	<7	120	63	69
VCTRC0004	5150715	124	125	INT	0.253		<7	<7	119	21	71
VCTRC0004	5150736	142	143	INT	0.086		<7	127	115	281	636
VCTRC0004	5150743	146	147	INT	0.038		<7	69	130	66	330
VCTRC0004	5150744	147	148	INT	0.043		<7	47	120	26	220
VCTRC0004	5150745	148	149	INT	0.264		<8	80	132	1054	833
VCTRC0004	5150751	154	155	INT	0.029		<7	55	179	6	222
VCTRC0005	5150788	72	76	INT	0.747		<7	69	82	60	99
VCTRC0005	5150789	76	80	INT	0.105		<6	65	50	70	94
VCTRC0005	5150790	80	84	INT	0.049		<7	92	63	83	109
VCTRC0005	5150791	84	88	INT	0.078		19	173	109	122	287
VCTRC0005	5150792	88	92	INT	0.058		20	119	111	84	299
VCTRC0005	5150793	92	96	INT	1.116		<6	68	29	76	125
VCTRC0005	5150794	96	97	INT	0.742		<6	82	52	70	142
VCTRC0005	5150795	97	98	INT	1.041		17	63	56	51	109
VCTRC0005	5150796	98	99	INT	0.567		<6	87	70	68	150
VCTRC0005	5150797	99	100	INT	0.325		<6	64	75	59	94
VCTRC0005	5150798	100	101	INT	0.69		<6	71	43	65	96

Hole ID	Sample	From	То	Data	Au	Au1	Bi	Cu	Ni	Pb	Zn
VCTRC0005	5150799	101	102	INT	0.994		<6	63	52	64	103
VCTRC0005	5150801	101	102	DUP	1.008		<6	60	44	66	87
VCTRC0005	5150803	102	103	INT	1.08		<7	34	79	64	139
VCTRC0005	5150804	103	104	INT	0.514		<7	43	102	77	167
VCTRC0005	5150805	104	105	INT	0.274		<7	40	122	164	266
VCTRC0005	5150806	105	106	INT	0.166		<7	46	119	115	250
VCTRC0005	5150848	141	142	INT	0.009		<7	64	97	43	270

JORC Code, 2012 Edition Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	
		Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 RC drill holes were sampled at 1m intervals throughout, with 4m composites also collected through weathered or less altered material. Samples collected from the cyclone were laid in plastic bags in sequence on the ground in rows of 20. Sample representivity is maintained by placing the samples in a pre-numbered calico bag with a corresponding sample book entry. Certified reference materials, field duplicates and laboratory repeat samples are analysed routinely. 1m RC samples were collected as a 2.5kg split in calico bags attached to the onboard cone splitter. Composite 4m metre samples were collected by spearing down the side of the plastic bag using a PVC spear and combined to create a 2.5 to 3.0kg composite sample. The samples were submitted to a commercial laboratory for drying, crushing, and pulverising to produce a 40g charge for fire assay of gold and determination of sulphur by LECO furnace.
Drilling techniques	 Drill type (eg core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 RC drilling using a 5.5" face sampling hammer. RC holes were surveyed with a REFLEX EZ-GYRO north-seeking gyro survey tool.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Sample recoveries and wet samples were monitored and recorded qualitatively in Lodestar's drill hole database. Recoveries were generally 80 -100% and approximately 1% were reported as wet samples. High pressure air used to maintain a dry sample and drill sampling equipment was cleaned regularly to minimise contamination. No relationship between sample recovery and grade has been established.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, 	 Chip samples were routinely geologically logged throughout the hole. Logging is qualitative in nature. All RC holes are geologically logged in full.

ABN: 68 108 737 711

SUITE 3542 LEVEL 35 TOWER ONE, BARANGAROO INTERNATIONAL TOWERS 100 BARANGAROO AVENUE SYDNEY NSW 2000

Criteria	JORC Code explanation	Commentary
	channel, etc) photography.The total length and percentage of the relevant intersections logged.	
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 No core samples taken. Individual 1m split samples collected from the cone splitter are submitted for assay. Most samples were dry. Selected intervals were composited from bagged 1m bulk samples to produce a 2.5kg 4m composite using a PVC spear. All samples for assay are stored in pre-numbered bags and submitted to Bureau Veritas Laboratories for sample preparation and analysis. Sample preparation for drill samples involves drying the whole sample, crushing to 3mm and pulverising to 90% passing -75 microns. The pulverised sample was split with a rotary sample divider to obtain a 40 gram charge. Duplicate field samples (1:25), certified reference standards (1:20) and laboratory reproducibility. Sample size is appropriate for early exploration drilling where mineral grainsize is unknown.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Following sample preparation a 40 gram charge was submitted for fire assay (with ICP-AES finish); the detection limit is 1ppb. 1:20 duplicate samples retained for analysis after fine crushing. 1:20 pulverised samples analysed for satisfactory grind size. The fire assay method is considered an estimation of total gold content. No geophysical tools were used to determine any element concentrations. Laboratory QAQC includes the use of laboratory standards and replicates;
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Significant intersections have not been independently validated at this time. No twinned holes have been completed for Lodestar drilling. Field and laboratory data are collected electronically and entered into a relational database. Data collection protocols are recorded in Lodestar's operation manual. There has been no adjustment to assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 DGPS has been used to locate the drillholes. Drill hole coordinates were recorded in MGA94 Zone 50 grid. The topography within prospect areas is generally flat; RL's are averaged from GPS readings of individual drill holes in each area and are subject to significant

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. 	 error. In the Contessa and Gidgee Flat areas drill hole collar RL's have been adjusted to the DEM surface derived from a detailed aeromagnetic survey using Bendix/King radar altimeter equipment with a resolution of 0.3m. Drill holes at Contessa were placed at a nominal hole spacing of 50m (north-south) and 40m (east-west) and at Gidgee Flat 50m (north-south) and 30m (east- west). The drilling subject of this announcement has not been used to prepare Mineral Resource estimates at
	 Whether sample compositing has been applied. 	this stage.No compositing was been applied for the RC samples.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 At Contessa the target mineralisation is believed to dip towards the north based on limited diamond drilling and a marker graphitic shear. No orientation based sampling bias has been identified in the data.
Sample security	 The measures taken to ensure sample security. 	 Samples were stored at Lodestar's exploration camp in sealed bags under supervision prior to dispatch by Lodestar contractors and registered courier to Bureau Veritas - UltraTrace Laboratories.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 No audits or reviews have been carried out.
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Contessa is located on E52/2456, within Lodestar's Ned's Creek project. The tenement is owned by Audacious Resources, a wholly-owned subsidiary of Lodestar Minerals and expires on 16/09/2020. The tenement is within the native title claim WC99/46 of the Yugunga-Nya Group. Lodestar has signed a Heritage Agreement with the traditional owners to carry out mineral exploration on the tenement. Yowereena – Contessa may extend into M52/780. The tenements on which the historic exploration was completed and in which Lodestar is earning an 80% interest are held by Vango Mining Limited and Dampier (Plutonic) Pty Ltd (a wholly-owned subsidiary of Vango Mining Limited). M52/780 expires on 26/09/2034 (VANGO 60/100:DAMPIER 40/100). Lodestar is earning an 80% interest in the tenements by spending \$357,000 before the anniversary of the farm-in agreement, in Mm.2012
		 in May 2018. M52/780 is located within the Yugunga Nya people native title claim WAD6132/1998.

Criteria	JORC Code explanation	Commentary
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Exploration commenced at McDonald Well in the late 1960's, WMC explored for Zambian Copper Belt style mineralisation and completed regional geological mapping and sampling, followed by minor percussion drilling. CRA Exploration completed regional mapping and auger sampling, also at McDonald Well. No significant anomalies were identified on the tenements. Minor exploration drilling by Barrick and CRA Exploration east and south of Contessa intersected ultramafic lithologies, confirming the extent of the greenstone sequence in this area. There has been no material exploration by other parties over the Contessa area. Gold exploration in the Plutonic Well greenstone belt commenced in 1986. Marymia Exploration, in their 1994 report, declares that there had been little or no previous exploration within the Yowereena tenements.
Geology	Deposit type, geological setting and style of mineralisation.	 The geology of the project area comprises the northern margin of the Proterozoic Yerrida Basin. The geology forms two discrete units; Proterozoic sediments of the Yerrida Basin that are prospective for sediment-hosted copper and base metal mineralisation in black shale and carbonate sequences, with evidence of secondary and primary copper mineralisation in the Thaduna district, overlie Archaean basement rocks on the northern margin of the Yerrida Basin. The basement-sediment contact trends east-west and Lodestar's exploration has identified extensive gold anomalism adjacent to this contact. The basement consists of granite and fringing mafic to intermediate and ultramafic rocks that are not well exposed at surface. The mafic-ultramafic rocks and the adjacent granite that hosts gold mineralisation are thought to be Archaean in age but may be part of the Glenburgh orogenic event along the northern Yilgarn margin. Identification of syenite-hosted, intrusion-related gold mineralisation at Brumby and Gidgee Flat indicates that this region differs from other lode gold occurrences in the Plutonic Well greenstone belt and the surrounding Proterozoic fold belt and does not form part of the adjacent Marymia Inlier.
Drill hole information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level - elevation above sea level in metres) 	 Tabulated drillhole data is provided in Tables 1 and 2. Location of previous Drillholes based on historical reports and data, originally located on surveyed sites, and DGPS. Northing and easting data generally within 0.1m accuracy RL data +-0.2m Down hole length =+- 0.1 m

Criteria		JORC Code explanation	C	Commentary
		of the drill hole collar		
		 dip and azimuth of the hole 		
		 down hole length and interception 		
		depth		
		• hole length.		
	•	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.		
Data aggregation methods	•	In reporting Evaluration Results, weighting	٠	 Assay data are reported as individual 1 metre results for RC samples, refer Appendix 1 and 2.
		In reporting Exploration Results, weighting		
		averaging techniques, maximum and/or		
		minimum grade truncations (eg cutting of high		
		grades) and cut-off grades are usually Material		
		and should be stated.		
	•	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.		
Relationship		These relationships are particularly important in	•	perpendicular to the regional strike of
between	•			
mineralisation		the reporting of Exploration Results. If the geometry of the mineralisation 		stratigraphy. Measurement of foliation in
widths and intercept		with respect to the drill hole angle is		the area indicates steep dips however mineralisation appears to dip shallowly to
lengths		known, its nature should be reported.		steeply to the north. The actual dip of mineralisation and its relationship to the drill hole intersections is not confirmed at this stage of exploration but is estimated to approximate true width at Contessa.
	•	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').		
Diagrams	٠	Appropriate maps and sections (with scales)	•	• Refer Figures 2, 3, 4, 5 and 6 for drillhole
		and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.		locations, geology and sectional views and Tables 1 and 2 for intersections and drillhole details.
Balanced reporting	•	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	•	All relevant intersections are reported in Table 1 and all significant results are reported in Appendix 1.
Other substantive exploration data	•	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	•	None to report.

Criteria	JORC Code explanation	Commentary
Further Work •	(eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	 Contiguous supergene gold mineralisation was intersected by aircore drilling. RC drilling has confirmed and extended the mineralisation and demonstrated a spatial association with the granite contact. This contact is open along strike from the RC drilling and requires systematic drill testing. Diamond drilling and RC drilling will provide additional coverage between the current RC drill programme and the granite contact.