

#### CONFIRMATION OF MAJOR GOLD SYSTEM 35km FROM PLUTONIC BELT

#### **HIGHLIGHTS**

> Drilling results from 75 aircore and two RC drill holes completed across 100%-owned Neds Creek Project and Yowereena Farm-in confirm a major gold system.

#### **NEDS CREEK (Lodestar – 100%)**

#### Contessa

- Gold mineralisation confirmed 50m down-dip from diamond hole LND001.
- > LNRC020, a single RC drill hole test of the target, reported
  - o 10m at 1.4g/t Au from 138m, including
    - 6m at 1.7g/t Au from 139m and 1m at 4.4g/t Au from 143m
- Mineralisation is open down-dip and along the contact to the southwest and northeast.
- ➤ The target is lode-style gold within a major north-dipping structure over 2000m long that is untested beyond current drilling.

#### **Gidgee Flat**

- ▶ Drilling in a 80m by 60m area below shallow aircore discovery returns multiple thick gold intersections with distinct high-grade zones:
  - 12m at 2.3g/t Au from 80m
  - o 15m at 3.2g/t Au from 72m (incl. 4m at 5.0g/t from 72m)
  - o 20m at 2.4g/t Au from 44m (incl. 4m at 4.8g/t Au from 48m)
  - o 4m at 1.5g/t Au from 74m (ended in mineralisation)
  - o 4m at 11g/t Au from 48m
  - o 8m at 4.2g/t from 48m (incl. 4m at 7.37g/t Au from 52m)
  - o 16m at 1.7g/t Au from 44m
- > 8 of 14 holes ended in mineralisation
- Hosted by a north-dipping structure and open to the northwest and north

#### **YOWEREENA (Lodestar earning 80%)**

#### **Boundary Fence**

- First-pass reconnaissance aircore drilling returns thick intersections of shallow gold mineralisation
  - o 16m at 1.6g/t Au from 28m, including 4m at 5.6g/t Au from 28m
  - o 12m at 1.7g/t Au from 48m, including 4m at 4.6g/t Au from 48m
- > Large areas remain open between mineralised holes
- Verification drilling of historic gold intersections confirms potential for high grade gold;
  - o 11m at 7.3g/t Au from 0m, including 1m at 23.5g/t Au from 0m
  - o 6m at 1.5g/t Au from 5m, including 1m at 4.0g/t Au from 6m

RC DRILLING, SUITABLE FOR RESOURCE CALCULATION PURPOSES, TO RESUME AT CONTESSA AND GIDGEE FLAT AS EARLY AS PRACTICABLE IN THE FIRST QUARTER, WITH THE AIM OF DEFINING THE EXTENT OF MINERALISATION.



West Australian gold explorer Lodestar Minerals Limited, ("Lodestar" or "the Company", ASX: LSR) advises that assay results from recently completed aircore and RC drilling programs on the Company's 100% - owned Ned's Creek project and the adjacent Yowereena gold project (where Lodestar is earning an 80% interest) have been received (See Figures 1 & 2).

A significant new discovery has been made at Gidgee Flat; located 2km southwest of Contessa within the Neds Creek Project (see Figure 1). A 14 hole aircore program drilled within an 80m x 60m area hit a wide, north-dipping structure with a distinct high-grade zone. The structure remains open to the north and northwest and 8 of the 14 holes ended in mineralisation. The drilling results are highly significant and may represent the most significant advance at Neds Creek since the initial discovery of Contessa in 2013.

At Contessa, RC drilling of a major structural contact has confirmed that mineralisation extends to depth, opening up a large area for systematic RC drilling to scope the gold distribution below the strong supergene gold anomaly.

These results represent a step-change in realising the gold potential at Neds Creek and support the Company's firm belief that sustained, systematic exploration will create significant opportunity for the discovery of economic resources. Follow up drilling at Neds Creek will be undertaken as soon as practicable in the March quarter 2018.

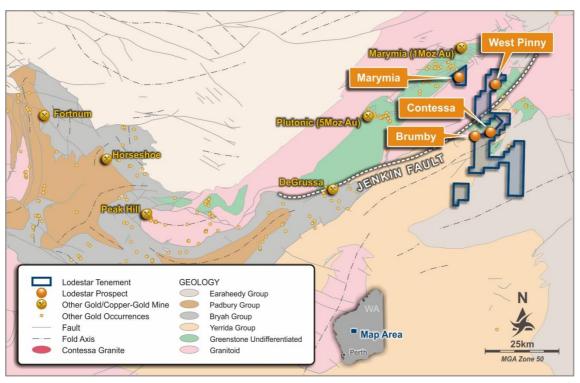
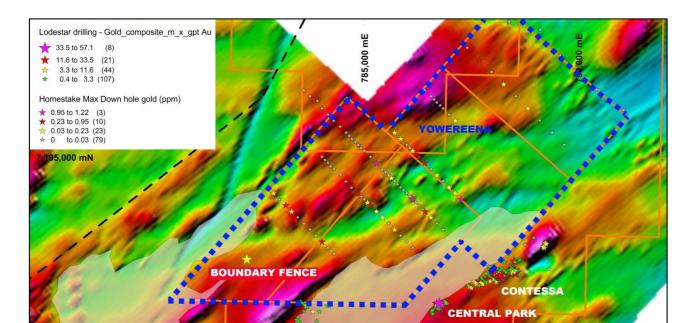




Figure 1 Location plan, Neds Creek project



GIDGEE FLAT

2.500



All results are discussed below and all assay results greater than 0.1g/t Au are listed in the Annexure.

Figure 2 Prospect location plan

#### **CONTESSA**

7,190,000 mN

Assay results confirm the presence of gold mineralisation within a zone of silica-pyrite alteration on the contact between diorite and felsic schist (see Lodestar's ASX announcement dated 8<sup>th</sup> December 2017). Logging of LNRC020, drilled 50m down-dip of diamond hole LND001 identified 3% to 5% pyrite in the interval between 139m and 148m downhole. Assay results from this 10m interval reported significant gold and have confirmed the importance of this structure as a major, unexplored lodestyle gold target which is open down-dip and along strike. The overall intersection returned:

BRUMBY

- > 10m at 1.4g/t Au from 138m, including 6m at 1.7g/t Au from 139m and 1m at 4.4g/t Au from 143m
- The contact is open down-dip and along strike

High-grade gold in the footwall to the structure (**0.65m** at **9.7g/t Au** from **142.85m** in **LND002**) is believed to be part of the same mineralising event and indicates that similar grades can be expected within the structure itself. These results represent a major advance towards unlocking the significant gold potential at Contessa and Neds Creek.



Significant results are listed in Table 1 and drill hole location is shown in Figures 3 & 4.

| HoleID  | Easting | Northing | RL  | Total Depth<br>(m) | DrillType | Dip | Azimuth | From | То  | Au g/t |
|---------|---------|----------|-----|--------------------|-----------|-----|---------|------|-----|--------|
| LNRC020 | 787980  | 7192376  | 574 | 225                | RC        | -60 | 130     | 138  | 139 | 0.7    |
|         |         |          |     |                    |           |     |         | 139  | 140 | 1.18   |
|         |         |          |     |                    |           |     |         | 140  | 141 | 1.41   |
|         |         |          |     |                    |           |     |         | 141  | 142 | 0.8    |
|         |         |          |     |                    |           |     |         | 142  | 143 | 1.56   |
|         |         |          |     |                    |           |     |         | 143  | 144 | 4.45   |
|         |         |          |     |                    |           |     |         | 144  | 145 | 1.10   |
|         |         |          |     |                    |           |     |         | 145  | 146 | 0.6    |
|         |         |          |     |                    |           |     |         | 146  | 147 | 0.7    |
|         |         |          |     |                    |           |     |         | 147  | 148 | 1.77   |
|         |         |          |     |                    |           |     |         | 160  | 161 | 0.9    |
|         |         |          |     |                    |           |     |         | 161  | 162 | 3.04   |
|         |         |          |     |                    |           |     |         | 162  | 163 | 0.6    |
|         |         |          |     |                    |           |     |         | 171  | 172 | 1.32   |

Table 1 Significant assays LNRC020 >0.5g/t Au.

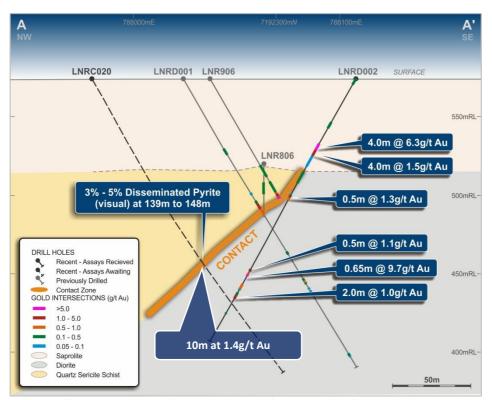



Figure 3 Drill section Contessa, showing LNRC020 and contact mineralisation.



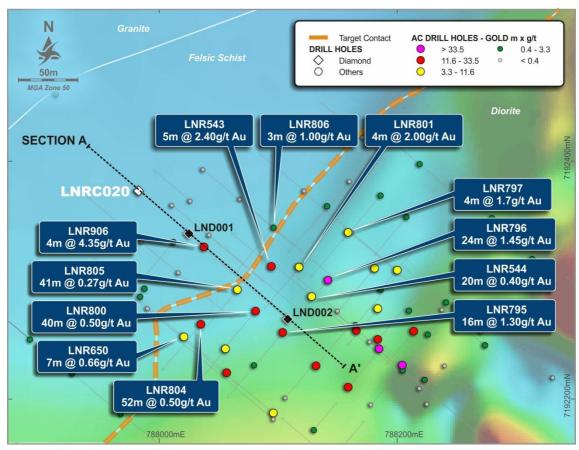



Figure 4 Collar plan Contessa drilling. Contact untested beyond current drill section.

#### **NEXT STEPS**

Lodestar has been awarded a co-funding grant of up to \$90,000 under the WA government's exploration incentive scheme (EIS) to advance drilling of the Contessa prospect. Contessa represents a priority gold target with potential for significant scale and the next phase of drilling will comprise step-out RC drilling to test the contact along strike. This program is planned to commence in the first quarter of 2018.

#### **GIDGEE FLAT**

Fourteen aircore drill holes were completed at Gidgee Flat over an area of 80m by 60m. The program targeted extensions to mineralisation intersected in previous aircore drilling (LNR875 – 8m at 2.1g/t Au from 76m, see Lodestar's ASX announcements dated 10<sup>th</sup> July 2017 and 8<sup>th</sup> December 2017). The program successfully identified strong gold mineralisation that remains open to the north and northwest. Many of the aircore holes have intersected the up-dip margin of a north-dipping, low angle structure that is identified by sericite-pyrite alteration and associated gold mineralisation. The structure can be traced from the supergene zone in the southern holes into deeper transition to saprock mineralisation at the northern end of drilling. Significant intersections are listed in Table 2 and drill hole locations are shown in Figures 5 to 7.



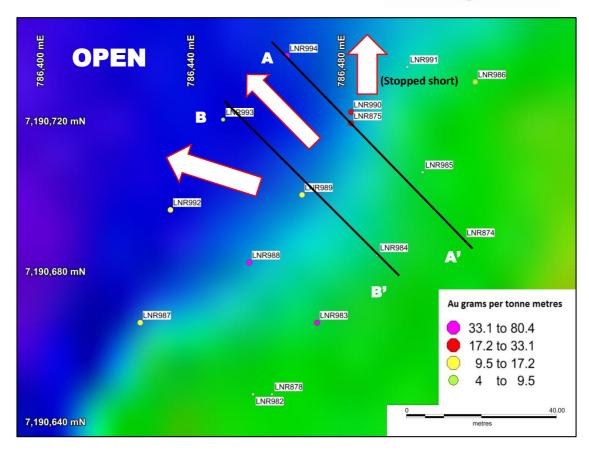



Figure 5 Gidgee Flat drill collar plan showing gold distribution on RTP\_1VD magnetic image (MGA94).

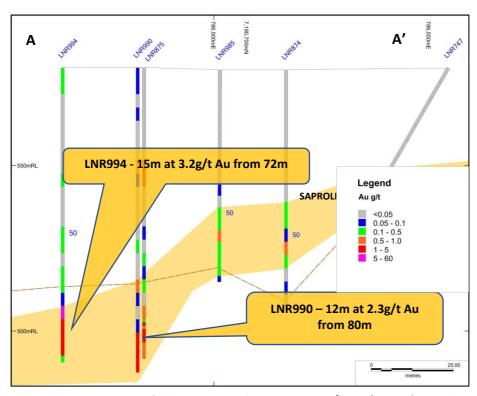



Figure 6 Cross-section A-A' showing mineralisation at >0.1g/t Au (base of complete oxidation as brown line).



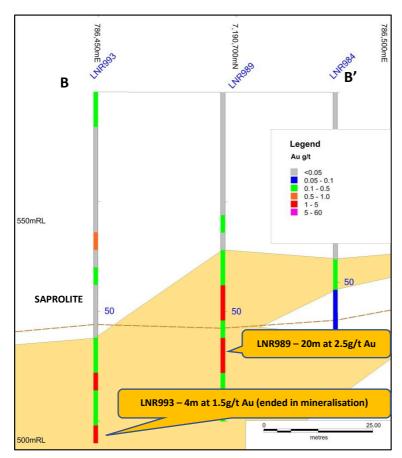



Figure 7 Cross-section B-B' showing mineralisation at >0.1g/t Au.

| HoleID  | Easting | Northing | RL  | Depth(m) | DrillType | Dip | Azimuth | From | То | Au<br>gpt |
|---------|---------|----------|-----|----------|-----------|-----|---------|------|----|-----------|
| LNR983  | 786474  | 7190666  | 575 | 63       | AC        | -60 | 220     | 48   | 52 | 11.7      |
| LNR986  | 786516  | 7190730  | 575 | 86       | AC        | -60 | 220     | 28   | 32 | 1.12      |
|         |         |          |     |          |           |     |         | 56   | 60 | 1.04      |
|         |         |          |     |          |           |     |         | 76   | 80 | 1.91      |
|         |         |          |     |          |           |     |         | 80   | 83 | 1.65      |
| LNR987  | 786427  | 7190666  | 575 | 70       | AC        | -90 | 0       | 40   | 44 | 3.77      |
| LNR988  | 786456  | 7190682  | 575 | 62       | AC        | -90 | 0       | 48   | 52 | 1.22      |
|         |         |          |     |          |           |     |         | 52   | 56 | 7.37      |
| LNR989  | 786470  | 7190700  | 575 | 75       | AC        | -90 | 0       | 44   | 48 | 3.44      |
|         |         |          |     |          |           |     |         | 48   | 52 | 4.84      |
|         |         |          |     |          |           |     |         | 56   | 60 | 1.78      |
|         |         |          |     |          |           |     |         | 60   | 64 | 2.07      |
| LNR990* | 786483  | 7190722  | 575 | 92       | AC        | -90 | 0       | 80   | 84 | 2.15      |
|         |         |          |     |          |           |     |         | 84   | 88 | 3.3       |
|         |         |          |     |          |           |     |         | 88   | 92 | 1.46      |
| LNR992* | 786435  | 7190696  | 575 | 78       | AC        | -90 | 0       | 44   | 48 | 3.45      |
|         |         |          |     |          |           |     |         | 52   | 56 | 1.68      |
|         |         |          |     |          |           |     |         | 56   | 60 | 1.55      |
| LNR993* | 786449  | 7190720  | 575 | 79       | AC        | -90 | 0       | 64   | 68 | 1.62      |
|         |         |          |     |          |           |     |         | 76   | 80 | 1.55      |



| HoleID | Easting | Northing | RL  | Depth(m) | DrillType | Dip | Azimuth | From | То | Au<br>gpt |
|--------|---------|----------|-----|----------|-----------|-----|---------|------|----|-----------|
| LNR994 | 786466  | 7190737  | 575 | 89       | AC        | -90 | 0       | 72   | 76 | 5.05      |
|        |         |          |     |          |           |     |         | 76   | 80 | 1.81      |
|        |         |          |     |          |           |     |         | 80   | 84 | 3.96      |
|        |         |          |     |          |           |     |         | 84   | 87 | 1.64      |

Table 2 Significant assays Gidgee Flat aircore drilling >1.0g/t Au (\* ended in mineralisation).

#### **NEXT STEPS**

Aircore drilling has intersected very significant grades and widths of gold mineralisation associated with a low angle shear zone, expressed as locally intense, sericite-pyrite alteration within strongly foliated mafic rocks. The mineralisation is open to the north and northwest and is a priority for stepout RC drilling. RC drilling will be carried out in combination with the Contessa program, planned for the first quarter of 2018.

#### **BOUNDARY FENCE (Yowereena tenements, Lodestar earning 80%)**

Aircore drilling completed at Boundary Fence had two main objectives

- 1. Extend testing beyond the area drilled by Marymia Exploration, revising the north-dipping tabular "reef" model targeted in the earlier drilling and
- 2. Confirm the high-grade gold results reported in historic RAB drilling.

Fifty seven holes were completed, four of these targeted historic drill holes reporting significant gold intersections to validate the historic data (see Lodestar's ASX announcement dated 14 March 2017). The results of the validation drilling are summarised in Table 3.

| HoleID | Intersection                                                  |
|--------|---------------------------------------------------------------|
| LNR964 | 11m at 7.3g/t Au from 0m                                      |
| YHR-15 | 12m at 8.1g/t Au from 0m                                      |
| LNR965 | 6m at 1.5g/t Au from 5m or 19m at 0.8g/t from 5m              |
| YHR-90 | 19m at 3.3g/t Au from 5m                                      |
| LNR966 | 1m at 1.2g/t Au from 10m or 26m at 0.2g/t Au from 0m          |
| YHR-98 | 26m at 2.1g/t Au from 0m                                      |
| LNR973 | 3m at 1.6g/t Au from 41m or 11m at 0.1g/t Au from 45m         |
| YHR-54 | 11m at 10.5g/t Au from 45m, includes 1m at 110g/t Au from 45m |

Table 3. Boundary Fence validation drill holes.

Aircore drilling has confirmed high-grade, near surface gold (including grades of up to 23.5g/t Au) at Boundary Fence generally however, the earlier results from specific holes have not been replicated. The control on the high-grade gold is not known and the reason for the discrepancy is not clear.

Thick zones of low grade mineralisation have been intersected within the prospect area defined by historic drilling and given the wide traverse spacing it is believed there is potential for lode-style gold, such as structurally controlled plunging ore shoots, within the current drill pattern. Significant gold intersections are listed in Table 4.

Drilling extending beyond the original prospect area was completed on 50m hole spacing. In contrast to the original grid, the Lodestar drill holes were drilled towards the south east, perpendicular to the northeast striking sequence (see Figure 8) and it is evident that significant gaps exist in the original drilling.



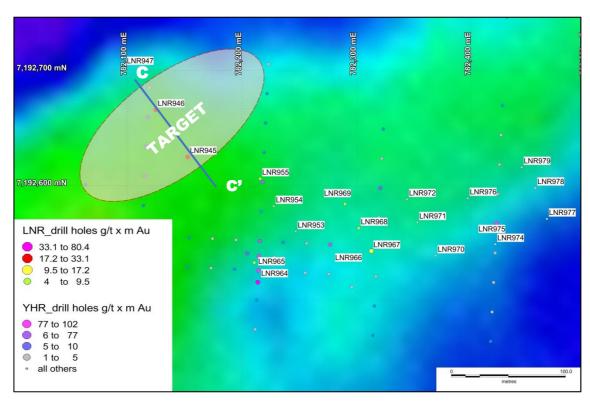



Figure 8 Drill collar plan Boundary Fence prospect showing shallow target. RTP1VD magnetic image showing the northeast strike of the sequence (MGA94).

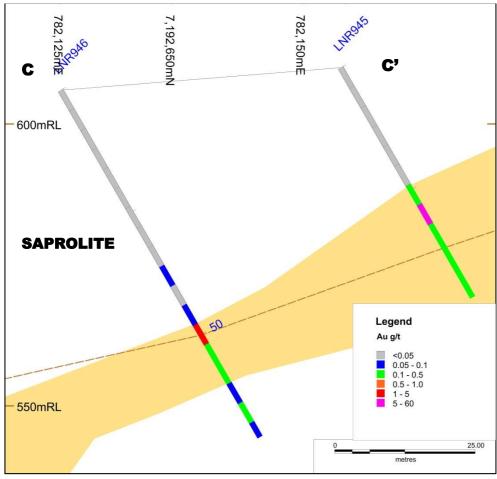



Figure 9 Cross-section C-C' showing north dip to mineralisation within low angle fault.



#### **NEXT STEPS**

Thick zones of sub-1g/t gold, with localised higher grades, occur within a north-dipping, low angle fault defined by abundant quartz veining and quartz-sericite alteration (see Figure 9). It is believed that there is potential for economic grades of mineralisation to occur within the fault in discrete structural settings. In-fill drilling is necessary to map out the gold distribution in greater detail.

| HoleID | Easting | Northing | HoleID | Depth(m) | DrillType | Dip | Azimuth | From | То | Au g/t |
|--------|---------|----------|--------|----------|-----------|-----|---------|------|----|--------|
| LNR945 | 782153  | 7192625  | 598    | 47       | AC        | -60 | 150     | 28   | 32 | 5.68   |
| LNR946 | 782125  | 7192666  | 606    | 71       | AC        | -60 | 150     | 48   | 52 | 4.63   |
| LNR952 | 781973  | 7192923  | 596    | 53       | AC        | -60 | 150     | 12   | 16 | 1.15   |
| LNR955 | 782216  | 7192606  | 596    | 55       | AC        | -60 | 150     | 40   | 44 | 1.55   |
| LNR964 | 782214  | 7192516  | 604    | 56       | AC        | -60 | 180     | 0    | 1  | 23.5   |
|        |         |          |        |          |           |     |         | 1    | 2  | 11.2   |
|        |         |          |        |          |           |     |         | 2    | 3  | 8.88   |
|        |         |          |        |          |           |     |         | 4    | 5  | 9.66   |
|        |         |          |        |          |           |     |         | 6    | 7  | 1.7    |
|        |         |          |        |          |           |     |         | 9    | 10 | 20.3   |
|        |         |          |        |          |           |     |         | 10   | 11 | 2.27   |
| LNR965 | 782211  | 7192533  | 599    | 65       | AC        | -60 | 180     | 5    | 6  | 1.25   |
|        |         |          |        |          |           |     |         | 6    | 7  | 4.09   |
|        |         |          |        |          |           |     |         | 9    | 10 | 1.4    |
|        |         |          |        |          |           |     |         | 10   | 11 | 1.15   |
| LNR966 | 782297  | 7192536  | 604    | 76       | AC        | -60 | 180     | 10   | 11 | 1.25   |
| LNR968 | 782302  | 7192563  | 599    | 79       | AC        | -60 | 150     | 44   | 48 | 1.9    |
| LNR969 | 782290  | 7192584  | 598    | 83       | AC        | -60 | 150     | 20   | 24 | 1.02   |
| LNR973 | 782427  | 7192561  | 597    | 84       | AC        | -60 | 180     | 4    | 8  | 2.39   |
|        |         |          |        |          |           |     |         | 23   | 24 | 1.36   |
|        |         |          |        |          |           |     |         | 41   | 42 | 3.08   |
|        |         |          |        |          |           |     |         | 43   | 44 | 1.86   |

Table 4 Significant drill results from Boundary Fence >1.0 g/t Au.

#### **CONCLUSION**

Three outstanding gold targets have been identified at Contessa, Gidgee Flat and Boundary Fence. Each prospect is associated with north-dipping structures, a characteristic of many of the gold deposits of the highly endowed, northern margin Plutonic Well greenstone belt. The similarity of the structural settings at a prospect and regional scale indicates that the north-dipping faults (thrusts) are important in localising mineralisation and that the districts have a shared history of deformation and mineralisation.

Planning for priority follow up RC drill programs is underway and it is expected that drilling at Contessa and Gidgee Flat will commence in the first quarter of 2018.



#### **Contacts**

#### **Bill Clayton**

Managing Director info@lodestarminerals.com.au +61 8 9435 3200

#### Media enquiries

Michael Vaughan, Fivemark Partners michael.vaughan@fivemark.com.au +61 422 602 720

#### **About Lodestar**

Lodestar Minerals is an active Western Australian gold explorer with a prospective tenement package spanning more than 2,000km<sup>2</sup> at the edge of the Pilbara and Yilgarn Cratons. Lodestar has three main projects – Ned's Creek, Camel Hills and Imbin – and is also earning an 80% interest in Vango Mining's Yowereena gold project which is adjacent to Ned's Creek.

Lodestar's main focus is Ned's Creek where it has made a greenfield gold discovery at the Contessa prospect. Contessa is one of many partly explored gold anomalies located within a large shear zone developed along the margins of a 6 kilometre long, elongate composite granite intrusion.

#### **Competent Person Statement**

The information in this report that relates to Exploration Results is based on information compiled by Bill Clayton, Managing Director, who is a Member of the Australasian Institute of Geoscientists and has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Clayton consents to the inclusion in this report of the matters based on the information in the form and context in which it appears.

The information in this announcement that relates to previously released exploration results was disclosed under JORC 2012 in the ASX announcements dated 14<sup>th</sup> March 2017 "Farm-in Agreement Enhances Gold Potential at Neds Creek"; 10<sup>th</sup> July 2017 "Widespread high-grade gold results advance Neds Creek targets" and 8<sup>th</sup> December 2017 "Diamond drilling results support expanded drilling program". These announcements are available to view on the Lodestar website. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.



### **ANNEXURE**

| HoleID | Easting | Northing | RL  | TotalDepth(m) | DrillType | Dip | Azimuth | From | То | Au_ppb |
|--------|---------|----------|-----|---------------|-----------|-----|---------|------|----|--------|
| LNR925 | 781171  | 7191965  | 602 | 62            | AC        | -60 | 130     | 0    | 62 | nsi    |
| LNR926 | 781142  | 7192013  | 602 | 76            | AC        | -60 | 130     | 0    | 76 | nsi    |
| LNR927 | 781115  | 7192049  | 604 | 56            | AC        | -60 | 150     | 0    | 4  | nsi    |
| LNR928 | 781092  | 7192099  | 613 | 67            | AC        | -60 | 150     | 20   | 24 | 520    |
| LNR929 | 781076  | 7192137  | 621 | 57            | AC        | -60 | 150     | 44   | 48 | 115    |
| LNR930 | 781050  | 7192184  | 622 | 57            | AC        | -60 | 150     | 52   | 55 | 381    |
| LNR931 | 781013  | 7192227  | 613 | 54            | AC        | -60 | 150     | 0    | 54 | nsi    |
| LNR932 | 780994  | 7192272  | 616 | 62            | AC        | -60 | 150     | 0    | 62 | nsi    |
| LNR933 | 781581  | 7192144  | 599 | 55            | AC        | -60 | 150     | 0    | 55 | nsi    |
| LNR934 | 781560  | 7192186  | 606 | 84            | AC        | -60 | 150     | 0    | 4  | nsi    |
|        |         |          |     |               |           |     |         | 28   | 32 | 181    |
|        |         |          |     |               |           |     |         | 52   | 56 | 458    |
|        |         |          |     |               |           |     |         | 56   | 60 | 311    |
|        |         |          |     |               |           |     |         | 60   | 64 | 115    |
| LNR935 | 781535  | 7192232  | 598 | 70            | AC        | -60 | 150     | 0    | 70 | nsi    |
| LNR936 | 781505  | 7192267  | 590 | 41            | AC        | -60 | 150     | 0    | 41 | nsi    |
| LNR937 | 781477  | 7192311  | 593 | 47            | AC        | -60 | 150     | 0    | 47 | nsi    |
| LNR938 | 781457  | 7192362  | 588 | 54            | AC        | -60 | 150     | 0    | 54 | nsi    |
| LNR939 | 781434  | 7192404  | 594 | 65            | AC        | -60 | 150     | 0    | 64 | nsi    |
| LNR940 | 781404  | 7192447  | 599 | 55            | AC        | -60 | 150     | 28   | 32 | 105    |
| LNR941 | 781379  | 7192493  | 601 | 46            | AC        | -60 | 150     | 0    | 46 | nsi    |
| LNR942 | 781356  | 7192535  | 595 | 32            | AC        | -60 | 150     | 0    | 32 | nsi    |
| LNR943 | 781329  | 7192575  | 606 | 42            | AC        | -60 | 150     | 0    | 42 | nsi    |
| LNR944 | 781311  | 7192623  | 600 | 44            | AC        | -60 | 150     | 0    | 44 | nsi    |
| LNR945 | 782153  | 7192625  | 598 | 47            | AC        | -60 | 150     | 24   | 28 | 264    |
|        |         |          |     |               |           |     |         | 28   | 32 | 5680   |
|        |         |          |     |               |           |     |         | 32   | 36 | 151    |
|        |         |          |     |               |           |     |         | 36   | 40 | 416    |
|        |         |          |     |               |           |     |         | 40   | 44 | 319    |
|        |         |          |     |               |           |     |         | 44   | 47 | 201    |
| LNR946 | 782125  | 7192666  | 606 | 71            | AC        | -60 | 150     | 48   | 52 | 4630   |
|        |         |          |     |               |           |     |         | 52   | 56 | 230    |
|        |         |          |     |               |           |     |         | 56   | 60 | 341    |
|        |         |          |     |               |           |     |         | 64   | 68 | 116    |
| LNR947 | 782098  | 7192703  | 596 | 88            | AC        | -60 | 150     | 64   | 68 | 840    |
|        |         |          |     |               |           |     |         | 68   | 72 | 119    |
|        |         |          |     |               |           |     |         | 72   | 76 | 219    |
|        |         |          |     |               |           |     |         | 76   | 80 | 116    |
| LNR948 | 782068  | 7192747  | 601 | 70            | AC        | -60 | 150     | 0    | 70 | nsi    |
| LNR949 | 782051  | 7192795  | 593 | 55            | AC        | -60 | 150     | 0    | 55 | nsi    |
| LNR950 | 782024  | 7192838  | 599 | 65            | AC        | -60 | 150     | 0    | 65 | nsi    |
| LNR951 | 781998  | 7192882  | 601 | 47            | AC        | -60 | 150     | 36   | 40 | 132    |



| HoleID   | Easting | Northing | RL  | TotalDepth(m) | DrillType | Dip | Azimuth | From     | То       | Au_ppb     |
|----------|---------|----------|-----|---------------|-----------|-----|---------|----------|----------|------------|
| LNR952   | 781973  | 7192923  | 596 | 53            | AC        | -60 | 150     | 12       | 16       | 1150       |
|          |         |          |     |               |           |     |         | 16       | 20       | 434        |
|          |         |          |     |               |           |     |         | 20       | 24       | 561        |
|          |         |          |     |               |           |     |         | 40       | 44       | 119        |
|          |         |          |     |               |           |     |         | 44       | 48       | 140        |
| LNR953   | 782247  | 7192560  | 602 | 22            | AC        | -60 | 150     | 8        | 12       | 217        |
|          |         |          |     |               |           |     |         | 12<br>16 | 16<br>19 | 764<br>177 |
|          |         |          |     |               |           |     |         | 19       | 21       | 536        |
| LNR954   | 782228  | 7192582  | 596 | 30            | AC        | -60 | 150     | 16       | 20       | 364        |
| 233      | 701110  | , 151551 |     | 30            |           |     | 200     | 20       | 24       | 139        |
|          |         |          |     |               |           |     |         | 24       | 28       | 173        |
|          |         |          |     |               |           |     |         | 28       | 30       | 214        |
| LNR955   | 782216  | 7192606  | 596 | 55            | AC        | -60 | 150     | 40       | 44       | 1550       |
|          |         |          |     |               |           |     |         | 44       | 48       | 279        |
|          |         |          |     |               |           |     |         | 52       | 55       | 621        |
| LNR956   | 782410  | 7192768  | 595 | 38            | AC        | -60 | 150     | 0        | 38       | nsi        |
| LNR957   | 782379  | 7192814  | 601 | 62            | AC        | -60 | 150     | 0        | 62       | nsi        |
| LNR958   | 782357  | 7192858  | 598 | 62            | AC        | -60 | 150     | 0        | 62       | nsi        |
| LNR959   | 782331  | 7192904  | 592 | 58            | AC        | -60 | 150     | 0        | 58       | nsi        |
| LNR960   | 782311  | 7192941  | 594 | 56            | AC        | -60 | 150     | 16       | 20       | 101        |
|          |         |          |     |               |           |     |         | 20<br>32 | 24<br>36 | 134<br>116 |
| LNR961   | 782281  | 7192986  | 589 | 56            | AC        | -60 | 150     | 0        | 56       | nsi        |
| LNR962   | 782258  | 7193032  | 591 | 74            | AC        | -60 | 150     | 36       | 40       | 166        |
| LNR963   | 782228  | 7193075  | 600 | 69            | AC        | -60 | 150     | 0        | 69       | nsi        |
| LNR964   | 782214  | 7192516  | 604 | 56            | AC        | -60 | 180     | 0        | 1        | 23500      |
|          |         |          |     |               |           |     |         | 1        | 2        | 11200      |
|          |         |          |     |               |           |     |         | 2        | 3        | 8880       |
|          |         |          |     |               |           |     |         | 3        | 4        | 688        |
|          |         |          |     |               |           |     |         | 4        | 5        | 9660       |
|          |         |          |     |               |           |     |         | 5        | 6        | 954        |
|          |         |          |     |               |           |     |         | 6        | 7        | 1700       |
|          |         |          |     |               |           |     |         | 7        | 8        | 219        |
|          |         |          |     |               |           |     |         | 8        | 9        | 989        |
|          |         |          |     |               |           |     |         | 9        | 10       | 20300      |
|          |         |          |     |               |           |     |         | 10       | 11       | 2270       |
|          |         |          |     |               |           |     |         | 11       | 12       | 424<br>105 |
| LNR965   | 782211  | 7192533  | 599 | 65            | ΔC        | -60 | 180     | 12<br>2  | 13<br>3  | 105<br>125 |
| FINITAGO | 702211  | 1132333  | JJJ | US            | AC        | -00 | 100     | 3        | 3<br>4   | 123        |
|          |         |          |     |               |           |     |         | 5        | 6        | 1250       |
|          |         |          |     |               |           |     |         | 6        | 7        | 4090       |
|          |         |          |     |               |           |     |         | 7        | 8        | 394        |
|          |         |          |     |               |           |     |         | 8        | 9        | 867        |



| HoleID  | Easting | Northing | RL  | TotalDepth(m) | DrillType | Dip | Azimuth | From    | То      | Au_ppb     |
|---------|---------|----------|-----|---------------|-----------|-----|---------|---------|---------|------------|
|         |         |          |     |               |           |     |         | 9       | 10      | 1400       |
|         |         |          |     |               |           |     |         | 10      | 11      | 1150       |
|         |         |          |     |               |           |     |         | 11      | 12      | 658        |
|         |         |          |     |               |           |     |         | 13      | 14      | 168        |
|         |         |          |     |               |           |     |         | 14      | 15      | 264        |
|         |         |          |     |               |           |     |         | 15      | 16      | 406        |
|         |         |          |     |               |           |     |         | 16      | 17      | 499        |
|         |         |          |     |               |           |     |         | 17      | 18      | 354        |
|         |         |          |     |               |           |     |         | 18      | 19      | 370        |
|         |         |          |     |               |           |     |         | 19      | 20      | 133        |
| LNR966  | 782297  | 7192536  | 604 | 76            | AC        | -60 | 180     | 22<br>7 | 23<br>8 | 105<br>141 |
| LINK900 | 782297  | /192530  | 604 | 76            | AC        | -00 | 180     | 8       | 9       | 136        |
|         |         |          |     |               |           |     |         | 9       | 10      | 166        |
|         |         |          |     |               |           |     |         | 10      | 11      | 1250       |
|         |         |          |     |               |           |     |         | 11      | 12      | 618        |
|         |         |          |     |               |           |     |         | 13      | 14      | 201        |
|         |         |          |     |               |           |     |         | 14      | 15      | 673        |
|         |         |          |     |               |           |     |         | 15      | 16      | 336        |
|         |         |          |     |               |           |     |         | 16      | 17      | 264        |
|         |         |          |     |               |           |     |         | 19      | 20      | 332        |
|         |         |          |     |               |           |     |         | 20      | 21      | 204        |
|         |         |          |     |               |           |     |         | 21      | 22      | 770        |
|         |         |          |     |               |           |     |         | 22      | 23      | 360        |
|         |         |          |     |               |           |     |         | 23      | 24      | 232        |
|         |         |          |     |               |           |     |         | 24      | 25      | 263        |
|         |         |          |     |               |           |     |         | 25      | 26      | 276        |
|         |         |          |     |               |           |     |         | 26      | 27      | 124        |
|         |         |          |     |               |           |     |         | 30      | 34      | 115        |
| LNR967  | 782313  | 7192543  | 604 | 80            | AC        | -60 | 150     | 12      | 16      | 141        |
|         |         |          |     |               |           |     |         | 16      | 20      | 546        |
|         |         |          |     |               |           |     |         | 20      | 24      | 322        |
|         |         |          |     |               |           |     |         | 24      | 28      | 248        |
|         |         |          |     |               |           |     |         | 28      | 32      | 1530       |
|         |         |          |     |               |           |     |         | 32      | 36      | 1460       |
| LNR968  | 782302  | 7192563  | 599 | 79            | ۸۲        | -60 | 150     | 36<br>0 | 40<br>4 | 484<br>115 |
| LINNSOO | 762302  | 7192303  | 399 | 79            | AC        | -00 | 130     | 20      | 24      | 266        |
|         |         |          |     |               |           |     |         | 40      | 44      | 115        |
|         |         |          |     |               |           |     |         | 44      | 48      | 1900       |
|         |         |          |     |               |           |     |         | 48      | 52      | 132        |
| LNR969  | 782290  | 7192584  | 598 | 83            | AC        | -60 | 150     | 20      | 24      | 1020       |
|         |         |          |     |               |           |     |         | 28      | 32      | 146        |
|         |         |          |     |               |           |     |         | 36      | 40      | 756        |
|         |         |          |     |               |           |     |         | 48      | 52      | 576        |
| L       |         |          |     |               |           |     |         |         |         |            |



| HoleID | Easting | Northing | RL  | TotalDepth(m) | DrillType | Dip | Azimuth | From     | То       | Au_ppb     |
|--------|---------|----------|-----|---------------|-----------|-----|---------|----------|----------|------------|
|        |         |          |     |               |           |     |         | 52       | 56       | 133        |
| LNR970 | 782369  | 7192539  | 592 | 74            | AC        | -60 | 150     | 44       | 48       | 146        |
|        |         |          |     |               |           |     |         | 48       | 52       | 614        |
|        |         |          |     |               |           |     |         | 52       | 56       | 707        |
| LNR971 | 782353  | 7192568  | 602 | 82            | AC        | -60 | 150     | 0        | 4        | 115        |
|        |         |          |     |               |           |     |         | 4<br>8   | 8<br>12  | 103<br>105 |
|        |         |          |     |               |           |     |         | 20       | 24       | 103        |
|        |         |          |     |               |           |     |         | 36       | 40       | 139        |
|        |         |          |     |               |           |     |         | 52       | 56       | 335        |
|        |         |          |     |               |           |     |         | 60       | 64       | 258        |
|        |         |          |     |               |           |     |         | 64       | 68       | 714        |
|        |         |          |     |               |           |     |         | 68       | 72       | 106        |
| LNR972 | 782344  | 7192588  | 601 | 99            | AC        | -60 | 150     | 0        | 4        | 155        |
|        |         |          |     |               |           |     |         | 16       | 20       | 284        |
|        |         |          |     |               |           |     |         | 24       | 28       | 467        |
|        |         |          |     |               |           |     |         | 36       | 40       | 369        |
|        |         |          |     |               |           |     |         | 40       | 44       | 145        |
|        |         |          |     |               |           |     |         | 44       | 48       | 103        |
|        |         |          |     |               |           |     |         | 52       | 56       | 125        |
|        |         |          |     |               |           |     |         | 56       | 60       | 308        |
|        |         |          |     |               |           |     |         | 60       | 64       | 177        |
|        |         |          |     |               |           |     |         | 64       | 68       | 153        |
|        |         |          |     |               |           |     |         | 72<br>76 | 76       | 209        |
|        |         |          |     |               |           |     |         | 76<br>80 | 80<br>84 | 232<br>317 |
| LNR973 | 782427  | 7192561  | 597 | 84            | AC        | -60 | 180     | 4        | 8        | 2390       |
| LIVING | 702427  | 7132301  | 337 | 04            | 7.0       | 00  | 100     | 14       | 15       | 320        |
|        |         |          |     |               |           |     |         | 18       | 19       | 298        |
|        |         |          |     |               |           |     |         | 19       | 20       | 591        |
|        |         |          |     |               |           |     |         | 22       | 23       | 294        |
|        |         |          |     |               |           |     |         | 23       | 24       | 1360       |
|        |         |          |     |               |           |     |         | 41       | 42       | 3080       |
|        |         |          |     |               |           |     |         | 42       | 43       | 122        |
|        |         |          |     |               |           |     |         | 43       | 44       | 1860       |
|        |         |          |     |               |           |     |         | 47       | 48       | 364        |
|        |         |          |     |               |           |     |         | 51       | 52       | 242        |
|        |         |          |     |               |           |     |         | 53       | 54       | 148        |
|        |         |          |     |               |           |     |         | 55       | 56       | 396        |
|        |         |          |     |               |           |     |         | 60       | 64       | 198        |
| LNR974 | 782421  | 7192549  | 604 | 109           | AC        | -60 | 150     | 0        | 4        | 694        |
|        |         |          |     |               |           |     |         | 4        | 8        | 603        |
|        |         |          |     |               |           |     |         | 8        | 12       | 353        |
|        |         |          |     |               |           |     |         | 44       | 48       | 232        |
|        |         |          |     |               |           |     |         | 48       | 52       | 107        |



| HoleID   | Easting | Northing | RL  | TotalDepth(m) | DrillType | Dip | Azimuth | From     | То       | Au_ppb     |
|----------|---------|----------|-----|---------------|-----------|-----|---------|----------|----------|------------|
|          |         |          |     |               |           |     |         | 56       | 60       | 510        |
| LNR975   | 782413  | 7192564  | 601 | 92            | AC        | -60 | 150     | 16       | 20       | 747        |
|          |         |          |     |               |           |     |         | 20       | 24       | 315        |
|          |         |          |     |               |           |     |         | 28       | 32       | 112        |
|          |         |          |     |               |           |     |         | 32       | 36       | 107        |
|          |         |          |     |               |           |     |         | 52       | 56       | 1140       |
|          |         |          |     |               |           |     |         | 56       | 60       | 176        |
|          |         |          |     |               |           |     |         | 60       | 64       | 112        |
|          |         |          |     |               |           |     |         | 64       | 68       | 237        |
| LNR976   | 782397  | 7192589  | 595 | 94            | AC        | -60 | 150     | 36       | 40       | 232        |
|          |         |          |     |               |           |     |         | 40       | 44       | 191        |
|          |         |          |     |               |           |     |         | 52       | 56       | 330        |
| LND077   | 702466  | 7402574  | F00 | 77            | 4.6       | 60  | 450     | 64       | 68       | 202        |
| LNR977   | 782466  | 7192571  | 596 | 77            | AC        | -60 | 150     | 20       | 24       | 367        |
|          |         |          |     |               |           |     |         | 52       | 56       | 110        |
|          |         |          |     |               |           |     |         | 56<br>60 | 60       | 631        |
| LND070   | 702456  | 7102500  | 607 | 97            | ۸۲        | 60  | 150     | 60       | 64       | 271        |
| LNR978   | 782456  | 7192598  | 607 | 97            | AC        | -60 | 150     | 0        | 4        | 182        |
| LNR979   | 782444  | 7192616  | 601 | 104           | AC        | -60 | 150     | 28<br>48 | 32<br>52 | 115<br>417 |
| LINN979  | 702444  | 7192010  | 001 | 104           | AC        | -00 | 130     | 52       | 56       | 463        |
|          |         |          |     |               |           |     |         | 56       | 60       | 376        |
|          |         |          |     |               |           |     |         | 64       | 68       | 217        |
|          |         |          |     |               |           |     |         | 68       | 72       | 135        |
| LNR980   | 781573  | 7192167  | 600 | 72            | AC        | -60 | 150     | 40       | 44       | 330        |
| LIVINGOO | 701373  | 7132107  | 000 | 72            | 7.0       | 00  | 130     | 44       | 48       | 445        |
| LNR981   | 781551  | 7192208  | 602 | 83            | AC        | -60 | 150     | 44       | 48       | 142        |
| 2501     | ,01001  | , 151100 | 002 | 00            |           |     | 200     | 76       | 80       | 110        |
| LNR982   | 786457  | 7190647  | 575 | 69            | AC        | -60 | 220     | 0        | 4        | 218        |
|          |         |          |     |               | -         |     |         | 28       | 32       | 139        |
|          |         |          |     |               |           |     |         | 52       | 56       | 227        |
|          |         |          |     |               |           |     |         | 56       | 60       | 222        |
| LNR983   | 786474  | 7190666  | 575 | 63            | AC        | -60 | 220     | 4        | 8        | 137        |
|          |         |          |     |               |           |     |         | 44       | 48       | 248        |
|          |         |          |     |               |           |     |         | 48       | 52       | 11700      |
|          |         |          |     |               |           |     |         | 52       | 56       | 152        |
|          |         |          |     |               |           |     |         | 56       | 60       | 139        |
| LNR984   | 786490  | 7190684  | 575 | 68            | AC        | -60 | 220     | 44       | 48       | 249        |
|          |         |          |     |               |           |     |         | 48       | 52       | 243        |
|          |         |          |     |               |           |     |         | 64       | 68       | 117        |
| LNR985   | 786502  | 7190706  | 575 | 74            | AC        | -60 | 220     | 48       | 52       | 191        |
|          |         |          |     |               |           |     |         | 52       | 56       | 170        |
|          |         |          |     |               |           |     |         | 56       | 60       | 552        |
|          |         |          |     |               |           |     |         | 60       | 64       | 437        |
|          |         |          |     |               |           |     |         | 64       | 68       | 157        |



| HoleID  | Easting | Northing | RL  | TotalDepth(m) | DrillType | Dip | Azimuth | From    | То      | Au_ppb     |
|---------|---------|----------|-----|---------------|-----------|-----|---------|---------|---------|------------|
|         |         |          |     |               |           |     |         | 68      | 72      | 309        |
| LNR986  | 786516  | 7190730  | 575 | 86            | AC        | -60 | 220     | 28      | 32      | 1120       |
|         |         |          |     |               |           |     |         | 36      | 40      | 549        |
|         |         |          |     |               |           |     |         | 40      | 44      | 187        |
|         |         |          |     |               |           |     |         | 48      | 52      | 374        |
|         |         |          |     |               |           |     |         | 52      | 56      | 138        |
|         |         |          |     |               |           |     |         | 56      | 60      | 1040       |
|         |         |          |     |               |           |     |         | 60      | 64      | 898        |
|         |         |          |     |               |           |     |         | 64      | 68      | 455        |
|         |         |          |     |               |           |     |         | 68      | 72      | 135        |
|         |         |          |     |               |           |     |         | 72      | 76      | 643        |
|         |         |          |     |               |           |     |         | 76      | 80      | 1910       |
|         |         |          |     |               |           |     |         | 80      | 83      | 1650       |
| LNR987  | 796427  | 7100666  | F7F | 60            | ۸۲        | 00  | 0       | 83      | 85      | 363<br>106 |
| LINK987 | 786427  | 7190666  | 575 | 60            | AC        | -90 | U       | 0<br>40 | 4<br>44 | 3770       |
|         |         |          |     |               |           |     |         | 44      | 44      | 204        |
| LNR988  | 786456  | 7190682  | 575 | 62            | AC        | -90 | 0       | 44      | 48      | 274        |
| LIVINGO | 780430  | 7190082  | 3/3 | 02            | AC        | -30 | U       | 48      | 52      | 1220       |
|         |         |          |     |               |           |     |         | 52      | 56      | 7370       |
| LNR989  | 786470  | 7190700  | 575 | 75            | AC        | -90 | 0       | 36      | 40      | 362        |
|         |         |          |     |               |           |     | -       | 40      | 44      | 211        |
|         |         |          |     |               |           |     |         | 44      | 48      | 3440       |
|         |         |          |     |               |           |     |         | 48      | 52      | 4840       |
|         |         |          |     |               |           |     |         | 52      | 56      | 214        |
|         |         |          |     |               |           |     |         | 56      | 60      | 1780       |
|         |         |          |     |               |           |     |         | 60      | 64      | 2070       |
|         |         |          |     |               |           |     |         | 64      | 68      | 361        |
|         |         |          |     |               |           |     |         | 68      | 72      | 583        |
|         |         |          |     |               |           |     |         | 72      | 75      | 136        |
| LNR990  | 786483  | 7190722  | 575 | 92            | AC        | -90 | 0       | 28      | 32      | 689        |
|         |         |          |     |               |           |     |         | 52      | 56      | 302        |
|         |         |          |     |               |           |     |         | 64      | 68      | 635        |
|         |         |          |     |               |           |     |         | 80      | 84      | 2150       |
|         |         |          |     |               |           |     |         | 84      | 88      | 3300       |
|         |         |          |     |               |           |     |         | 88      | 92      | 1460       |
| LNR991  | 786498  | 7190734  | 575 | 103           | AC        | -90 | 0       | 0       | 4       | 142        |
|         |         |          |     |               |           |     |         | 56      | 60      | 924        |
|         |         |          |     |               |           |     |         | 72      | 76      | 221        |
|         |         |          |     |               |           |     |         | 88      | 92      | 137        |
|         |         |          |     |               |           |     |         | 92      | 96      | 227        |
|         |         |          |     |               |           |     |         | 96      | 100     | 569        |
|         |         |          |     |               |           |     | _       | 100     | 103     | 571        |
| LNR992  | 786435  | 7190696  | 575 | 78            | AC        | -90 | 0       | 0       | 4       | 179        |
|         |         |          |     |               |           |     |         | 4       | 8       | 140        |



| HoleID   | Easting | Northing | RL  | TotalDepth(m) | DrillType | Dip | Azimuth | From      | То        | Au_ppb     |
|----------|---------|----------|-----|---------------|-----------|-----|---------|-----------|-----------|------------|
|          |         |          |     |               |           |     |         | 44        | 48        | 3450       |
|          |         |          |     |               |           |     |         | 48        | 52        | 476        |
|          |         |          |     |               |           |     |         | 52        | 56        | 1680       |
|          |         |          |     |               |           |     |         | 56        | 60        | 1550       |
|          |         |          |     |               |           |     |         | 60        | 64        | 199        |
|          |         |          |     |               |           |     |         | 64        | 68        | 291        |
|          |         |          |     |               |           |     |         | 68        | 72        | 250        |
|          |         |          |     |               |           |     |         | 72<br>76  | 76<br>78  | 400<br>693 |
| LNR993   | 786449  | 7190720  | 575 | 79            | AC        | -90 | 0       | 0         | 4         | 136        |
| LININGSS | 780443  | 7130720  | 373 | 79            | AC        | -90 | U       | 4         | 8         | 119        |
|          |         |          |     |               |           |     |         | 32        | 36        | 677        |
|          |         |          |     |               |           |     |         | 40        | 44        | 122        |
|          |         |          |     |               |           |     |         | 56        | 60        | 244        |
|          |         |          |     |               |           |     |         | 60        | 64        | 143        |
|          |         |          |     |               |           |     |         | 64        | 68        | 1620       |
|          |         |          |     |               |           |     |         | 68        | 72        | 155        |
|          |         |          |     |               |           |     |         | 72        | 76        | 248        |
|          |         |          |     |               |           |     |         | 76        | 80        | 1550       |
| LNR994   | 786466  | 7190737  | 575 | 89            | AC        | -90 | 0       | 0         | 4         | 418        |
|          |         |          |     |               |           |     |         | 4         | 8         | 113        |
|          |         |          |     |               |           |     |         | 32        | 36        | 203        |
|          |         |          |     |               |           |     |         | 48        | 52        | 116        |
|          |         |          |     |               |           |     |         | 52        | 56        | 188        |
|          |         |          |     |               |           |     |         | 60        | 64        | 497        |
|          |         |          |     |               |           |     |         | 64        | 68        | 191        |
|          |         |          |     |               |           |     |         | 72        | 76        | 5050       |
|          |         |          |     |               |           |     |         | 76        | 80        | 1810       |
|          |         |          |     |               |           |     |         | 80        | 84        | 3960       |
|          |         |          |     |               |           |     |         | 84        | 87        | 1640       |
|          |         |          |     |               |           |     |         | 87        | 89        | 103        |
| LNR995   | 786483  | 7190759  | 575 | 55            |           | -90 | 0       | 36        | 40        | 145        |
| LNR996   | 789230  | 7193180  | 583 | 93            | AC        | -60 | 130     | 0         | 93        | nsi        |
| LNR997   | 789199  | 7193209  | 567 | 64            | AC        | -60 | 130     | 0         | 64        | nsi        |
| LNR998   | 789173  | 7193235  | 569 | 64            | AC        | -60 | 130     | 0         | 64        | nsi        |
| LNR999   | 789145  | 7193262  | 565 | 62            | AC        | -60 | 130     | 0         | 62        | nsi        |
| LNRC020  | 787980  | 7192376  | 574 | 225           | RC        | -60 | 130     | 8         | 12        | 107        |
|          |         |          |     |               |           |     |         | 48<br>137 | 52<br>138 | 425<br>224 |
|          |         |          |     |               |           |     |         | 137       | 138       | 724        |
|          |         |          |     |               |           |     |         | 138       | 140       | 1180       |
|          |         |          |     |               |           |     |         | 140       | 141       | 1410       |
|          |         |          |     |               |           |     |         | 141       | 142       | 815        |
|          |         |          |     |               |           |     |         | 142       | 143       | 1560       |
|          |         |          |     |               |           |     |         | 143       | 144       | 4450       |
|          |         |          |     |               |           |     |         |           |           | 55         |



| HoleID  | Easting | Northing | RL  | TotalDepth(m) | DrillType | Dip | Azimuth | From       | То         | Au_ppb     |
|---------|---------|----------|-----|---------------|-----------|-----|---------|------------|------------|------------|
|         |         |          |     |               |           |     |         | 144        | 145        | 1100       |
|         |         |          |     |               |           |     |         | 145        | 146        | 676        |
|         |         |          |     |               |           |     |         | 146        | 147        | 777        |
|         |         |          |     |               |           |     |         | 147        | 148        | 1770       |
|         |         |          |     |               |           |     |         | 148        | 149        | 258        |
|         |         |          |     |               |           |     |         | 149        | 150        | 310        |
|         |         |          |     |               |           |     |         | 150        | 151        | 82         |
|         |         |          |     |               |           |     |         | 151        | 152        | 77         |
|         |         |          |     |               |           |     |         | 152        | 153        | 197        |
|         |         |          |     |               |           |     |         | 153        | 154        | 113        |
|         |         |          |     |               |           |     |         | 154        | 155        | 98         |
|         |         |          |     |               |           |     |         | 155        | 156        | 26         |
|         |         |          |     |               |           |     |         | 156        | 157        | 44         |
|         |         |          |     |               |           |     |         | 157        | 158        | 27         |
|         |         |          |     |               |           |     |         | 158        | 159        | 90         |
|         |         |          |     |               |           |     |         | 159        | 160        | 172<br>992 |
|         |         |          |     |               |           |     |         | 160<br>161 | 161<br>162 | 3040       |
|         |         |          |     |               |           |     |         | 162        | 163        | 677        |
|         |         |          |     |               |           |     |         | 163        | 164        | 290        |
|         |         |          |     |               |           |     |         | 164        | 165        | 206        |
|         |         |          |     |               |           |     |         | 165        | 166        | 157        |
|         |         |          |     |               |           |     |         | 166        | 167        | 116        |
|         |         |          |     |               |           |     |         | 167        | 168        | 100        |
|         |         |          |     |               |           |     |         | 168        | 169        | 108        |
|         |         |          |     |               |           |     |         | 169        | 170        | 38         |
|         |         |          |     |               |           |     |         | 170        | 171        | 24         |
|         |         |          |     |               |           |     |         | 171        | 172        | 1320       |
|         |         |          |     |               |           |     |         | 172        | 173        | 197        |
| LNRC021 | 786722  | 7191648  | 580 | 189           | RC        | -60 | 130     | 40         | 44         | 186        |
|         |         |          |     |               |           |     |         | 44         | 48         | 247        |
|         |         |          |     |               |           |     |         | 48         | 52         | 203        |
|         |         |          |     |               |           |     |         | 56         | 60         | 123        |
|         |         |          |     |               |           |     |         | 60         | 64         | 172        |
|         |         |          |     |               |           |     |         | 76         | 80         | 175        |
|         |         |          |     |               |           |     |         | 80         | 81         | 112        |
|         |         |          |     |               |           |     |         | 81         | 82         | 319        |
|         |         |          |     |               |           |     |         | 82         | 83         | 539        |
|         |         |          |     |               |           |     |         | 83         | 84         | 188        |
|         |         |          |     |               |           |     |         | 85         | 86         | 101        |
|         |         |          |     |               |           |     |         | 98         | 99         | 102        |
|         |         |          |     |               |           |     |         | 103        | 104        | 377        |
|         |         |          |     |               |           |     |         | 104        | 105        | 120        |
|         |         |          |     |               |           |     |         | 105        | 106        | 362        |
|         |         |          |     |               |           |     |         | 106        | 107        | 240        |



| HoleID | Easting | Northing | RL | TotalDepth(m) | DrillType | Dip | Azimuth | From | То  | Au_ppb |
|--------|---------|----------|----|---------------|-----------|-----|---------|------|-----|--------|
|        |         |          |    |               |           |     |         | 107  | 108 | 162    |
|        |         |          |    |               |           |     |         | 108  | 109 | 108    |
|        |         |          |    |               |           |     |         | 109  | 110 | 141    |
|        |         |          |    |               |           |     |         | 110  | 111 | 590    |
|        |         |          |    |               |           |     |         | 119  | 120 | 170    |
|        |         |          |    |               |           |     |         | 121  | 122 | 151    |
|        |         |          |    |               |           |     |         | 140  | 144 | 102    |

Assay results >0.1g/t Au. nsi =no significant intersection.

## **JORC Code, 2012 Edition**

## **Section 1 Sampling Techniques and Data**

| Criteria                    | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>techniques      | <ul> <li>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</li> </ul> | <ul> <li>The RC drill holes were sampled at 1m intervals through mineralisation and as 4m composites elsewhere. Aircore drill holes were sampled as 4m composites or less. Samples collected from the cyclone were laid in plastic bags in sequence on the ground in rows of 20.</li> <li>Sample representivity is maintained by placing the samples in a pre-numbered calico bag with a corresponding sample book entry. Certified reference materials, field duplicates and laboratory repeat samples are analysed routinely.</li> <li>Composite 4m metre samples were collected by spearing down the side of the plastic bag using a PVC spear and combined to create a 2.5 to 3.0kg composite sample. 1m RC samples were collected as a 2.5kg split in calico bags attached to the cone splitter. The sample was dried, crushed pulverised and split to produce a 40g charge for fire assay (RC) or aqua regia / ICP-MS (aircore) determination of gold and sulphur determined by ICP-OES.</li> </ul> |
| Drilling<br>techniques      | <ul> <li>Drill type (eg core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>RC drilling using a 5.5" face sampling hammer.</li> <li>Aircore drilling using a 90mm blade bit. RC holes were surveyed with a REFLEX Eztrac XTF survey tool.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Drill<br>sample<br>recovery | <ul> <li>Method of recording and assessing core and chip sample recoveries and results assessed.</li> <li>Measures taken to maximise sample recovery and ensure representative nature of the samples.</li> <li>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>Sample recoveries and wet samples were monitored and included in Lodestar's drill hole database.     High pressure air used to maintain a dry sample and drill sampling equipment was cleaned regularly to minimise contamination.</li> <li>No relationship between sample recovery and grade has been established, sample recovery was generally good.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| Criteria                                                | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Logging                                                 | <ul> <li>Whether core and chip samples have<br/>been geologically and geotechnically<br/>logged to a level of detail to support<br/>appropriate Mineral Resource<br/>estimation, mining studies and<br/>metallurgical studies.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>Chip samples were routinely geologically logged. The exploration drilling was testing gold anomalies in weathered rocks and the results are not intended to support Mineral Resource estimation.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                         | Whether logging is qualitative or<br>quantitative in nature. Core (or costean,<br>channel, etc) photography.  The table leads and account as a fitter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Logging is qualitative in nature.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                         | <ul> <li>The total length and percentage of the<br/>relevant intersections logged.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | All samples are geologically logged.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Sub-sampling<br>techniques and<br>sample<br>preparation | <ul> <li>If core, whether cut or sawn and whether quarter, half or all core taken.</li> <li>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</li> <li>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</li> <li>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</li> <li>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</li> <li>Whether sample sizes are appropriate to the grain size of the material being sampled.</li> </ul> | <ul> <li>No core samples taken.</li> <li>Drill samples were composited from the bagged 1m samples to produce a 2.5kg 4m composite using a PVC spear. Where mineralisation was identified in RC drilling individual 1m split samples from the cone splitter were submitted for assay.</li> <li>All samples for assay are stored in pre-numbered bags and submitted to Bureau Veritas (UltraTrace) Laboratories for sample preparation and analysis.</li> <li>Sample preparation for drill samples involves drying the whole sample, crushing to 3mm and pulverising to 90% passing -75 microns. The pulverised sample was split with a rotary sample divider to obtain a 40 gram charge. Duplicate field samples and laboratory repeats are used to monitor satisfactory reproducibility.</li> <li>Sample size is appropriate for early exploration drilling where mineral grainsize is unknown.</li> </ul> |
| Quality of assay<br>data and<br>laboratory tests        | <ul> <li>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</li> <li>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</li> <li>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</li> </ul>                                                                             | <ul> <li>Following sample preparation a 40 gram charge was submitted for aqua regia – ICP-MS or fire assay (with ICP-AES finish); the detection limit is 1ppb. The fire assay method is considered a total estimation of gold content, aqua regia is an effective digest for gold in oxidised material encountered in shallow exploration drilling.</li> <li>No geophysical tools were used to determine any element concentrations.</li> <li>Laboratory QAQC includes the use of laboratory standards and replicates; Lodestar's reference standards and field duplicates indicate acceptable accuracy and precision.</li> </ul>                                                                                                                                                                                                                                                                          |

| Criteria                                                         | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Verification of sampling and assaying  Location of data points   | <ul> <li>The verification of significant intersections by either independent or alternative company personnel.</li> <li>The use of twinned holes.</li> <li>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</li> <li>Discuss any adjustment to assay data.</li> <li>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral.</li> </ul> | <ul> <li>Significant intersections have not been independently validated at this time.</li> <li>No twinned holes have been completed for Lodestar drilling.</li> <li>Field and laboratory data are collected electronically and entered into a relational database. Data collection protocols are recorded in Lodestar's operation manual.</li> <li>There has been no adjustment to assay data.</li> <li>Drill hole locations are fixed by handheld GPS, accuracy is estimated to be +/-5 metres.</li> <li>Drill hole coordinates were recorded in MGA94 Zone</li> </ul> |
|                                                                  | <ul> <li>other locations used in Mineral<br/>Resource estimation.</li> <li>Specification of the grid system used.</li> <li>Quality and adequacy of topographic<br/>control.</li> </ul>                                                                                                                                                                                                                                                                                                                           | <ul> <li>The topography within prospect areas is generally flat; RL's are averaged from GPS readings of individual drill holes in each area and are subject to significant error. In the Contessa area drill hole collar RL's have been adjusted to the DEM surface derived from a detailed aeromagnetic survey using Bendix/King radar altimeter equipment with a resolution of 0.3m.</li> </ul>                                                                                                                                                                        |
| Data spacing<br>and distribution                                 | <ul> <li>Data spacing for reporting of<br/>Exploration Results.</li> <li>Whether the data spacing and<br/>distribution is sufficient to establish the<br/>degree of geological and grade<br/>continuity appropriate for the Mineral<br/>Resource and Ore Reserve estimation<br/>procedure(s) and classifications<br/>applied.</li> </ul>                                                                                                                                                                         | <ul> <li>Drill holes have variable spacing, generally 40 to 80 metres on section and ranging from 25 to 400 metres between sections.</li> <li>The data is insufficient to establish continuity for Mineral Resource estimation.</li> </ul>                                                                                                                                                                                                                                                                                                                               |
|                                                                  | <ul> <li>Whether sample compositing has been applied.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>Compositing has been applied for RC and aircore samples.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Orientation of<br>data in relation<br>to geological<br>structure | <ul> <li>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</li> <li>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</li> </ul>                                                                                                               | <ul> <li>RC drilling at Contessa - The target contact is interpreted to dip towards grid north at approximately 40 degrees, based on limited information. Drilling is approaching orthogonal to the structure. Aircore drilling is either vertical or -60 degrees oriented perpendicular to mapped structures or the strike of magnetic lineaments.</li> <li>Intersection widths at Contessa, based on the interpreted northerly dip, are believed to represent approximately true thickness.</li> </ul>                                                                 |
| Sample security                                                  | The measures taken to ensure sample security.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>Samples were stored at Lodestar's exploration camp<br/>in sealed bags under supervision prior to dispatch<br/>by Lodestar contractors and registered courier to<br/>Bureau Veritas - UltraTrace Laboratories.</li> </ul>                                                                                                                                                                                                                                                                                                                                        |
| Audits or reviews                                                | The results of any audits or reviews of sampling techniques and data.                                                                                                                                                                                                                                                                                                                                                                                                                                            | No audits or reviews have been carried out.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

#### Criteria

#### Commentary

# Mineral tenement and land tenure status

- Contessa is located on E52/2456, within Lodestar's Ned's Creek project. The tenement is owned by Audacious Resources, a wholly-owned subsidiary of Lodestar Minerals and expires on 16/09/2020. The tenement is within the native title claim WC99/46 of the Yugunga-Nya Group. Lodestar has signed a Heritage Agreement with the traditional owners to carry out mineral exploration on the tenement.
- Yowereena -The tenements on which the historic exploration was completed and in which Lodestar is earning an 80% interest are held by Vango Mining Limited and Dampier (Plutonic) Pty Ltd.
  - o M52/779 expires on 26/09/2034 (VANGO 60/100:DAMPIER 40/100).
  - o M52/780 expires on 26/09/2034 (VANGO 60/100:DAMPIER 40/100).
  - o M52/781 expires on 30/12/2036 (DAMPIER 100/100).
  - o M52/782 expires on 30/12/2036 (DAMPIER 100/100).
- Lodestar is earning an 80% interest in the tenements by spending \$357,000 before the anniversary of the farm-in agreement, in May 2018.
- M52/779 and M52/780 are located within the Yugunga Nya people native title claim WAD6132/1998. M52/781 and M52/782 are located within the Yugunga Nya people native title claim WAD6132/1998 and the Gingirana claim WAD6002/2003.

## Exploration done by other parties

- Exploration commenced at McDonald Well in the late 1960's, WMC explored for Zambian Copper Belt style mineralisation and completed regional geological mapping and sampling, followed by minor percussion drilling. CRA Exploration completed regional mapping and auger sampling, also at McDonald Well. No significant anomalies were identified on the tenements. Minor exploration drilling by Barrick and CRA Exploration east and south of Contessa intersected ultramafic lithologies, confirming the extent of the greenstone sequence in this area. There has been no material exploration by other parties over the Contessa area.
- Gold exploration in the Plutonic Well greenstone belt commenced in 1986. Marymia Exploration, in their 1994 report, state that there had been little or no previous exploration within the tenements.

Marymia Exploration carried out regional soil sampling and geological mapping. The soil sampling identified a modest gold anomaly, with a maximum of 15ppb gold, related to are outcropping quartz reef. Rock chips recovered from the area reported up to 0.20g/t gold. The soil sampling was extended, reporting peak values of 115ppb and 920ppb gold. The peak anomalies correspond to a flexure along the quartz reef and a probable shear zone trending southwest-northeast to west-east. The anomaly extended over an area of 500m by 100m at >20ppb gold. The prospect is known as Boundary Fence.

Marymia Exploration tested the anomaly with 99 RAB drill holes and 6 RC holes. RAB drilling reported significant results of >1g/t gold with possible supergene enrichment close to the surface. RC drill holes targeted near-surface high-grade mineralisation at shallow depth and 4 holes targeted the down-dip continuation of the mineralised zone, assuming a 30° northerly dip for the quartz vein system.

#### Geology

The geology of the project area comprises the northern margin of the Proterozoic Yerrida Basin. The geology forms two discrete units; Proterozoic sediments of the Yerrida Basin that are prospective for sediment-hosted copper and base metal mineralisation in black shale and carbonate sequences, with evidence of secondary and primary copper mineralisation in the Thaduna district overlie Archaean basement rocks on the northern margin of the Yerrida Basin. The basement-sediment contact trends east-west and Lodestar's exploration has identified extensive gold anomalism adjacent to this contact. The basement consists of granite and fringing mafic to intermediate and ultramafic rocks that are not well exposed at surface. The mafic-ultramafic rocks and the adjacent granite that hosts gold mineralisation are thought to be Archaean in age

| but may be part of the Glenburgh orogenic event along the northern Yilgarn margin. Identification of syenite-hosted, intrusion-related gold mineralisation at Brumby indicates that this region differs from other lode gold occurrences in the Plutonic Well greenstone belt and the surrounding Proterozoic fold belt and does not form part of the adjacent Marymia Inlier.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Tabulated data is provided in Tables 1 to 4 and the Annexure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| <ul> <li>Assay data are reported as 4 metre composites for aircore and RC samples. Selected RC intervals are reported as aggregates of individual 1m samples in zones where mineralisation was observed.</li> <li>Contessa intersections were calculated using no top-cut, a 0.5g/t Au cut-off and no internal dilution.</li> <li>Gidgee Flat intersections were calculated using no top-cut, a minimum 0.4g/t Au cut-off and no internal dilution.</li> <li>Boundary Fence intersections were calculated using no top-cut, a 0.1g/t Au cut-off and no internal dilution.</li> </ul>                                                                                                                                                                                                                                                                                                                                                     |  |
| <ul> <li>Most drilling at Contessa has been oriented -60 degrees towards 310 degrees, recent RC drilling and diamond drilling specifically targeted the contact between diorite and felsic schist and was drilled towards 130 degrees and 310 degrees. The geological interpretation implies that the contact and related vein system dips at approximately 40 degrees towards 310 degrees and the intersection widths in LNRC020 approximate the true thickness.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| See Figures 3 to 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| All drill holes are reported in the Annexure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| None to report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Extensive zones of anomalous gold greater than 100ppb (0.1g/t) have been identified in drilling at Contessa. Testing of the diorite contact adjacent to the anomalies has intersected significant lode-style mineralisation open at depth and along strike. The north-dipping, north east trending contact between diorite and felsic schist has now identified as a significant mineralised structure requiring systematic drilling. RC drilling is planned to determine the gold distribution along this structure.  At Gidgee Flat contiguous gold mineralisation was intersected by aircore drilling. A program of RC drilling is planned to establish the grade and continuity of this significant discovery.  Boundary Fence aircore drilling intersected extensive gold mineralisation related to a north-dipping, low angle fault. In-fill drilling is required to identify potential higher grade shoots within the fault zone. |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |