Lodestar Minerals Limited Level 2, 55 Carrington Street PO Box 985 Nedlands WA 6009 Tel: +61 8 9423 3200

ABN 32 127 026 528 Nedlands WA 6909 Fax: +61 8 9389 8327

ASX ANNOUNCEMENT

15 August 2016

COMPANY SNAPSHOT

LODESTAR MINERALS LIMITED ABN: 32 127 026 528

CONTACT DETAILS Bill Clayton, Managing Director +61 8 9423 3200

Registered and Principal Office Level 2, 55 Carrington Street Nedlands, WA 6009

PO Box 985 Nedlands, WA, 6909

info@lodestarminerals.com.au

www.lodestarminerals.com.au

CAPITAL STRUCTURE Shares on Issue:

386,224,233 (LSR)

Options on Issue: 43,550,127 (unlisted)

ASX: LSR

PROJECTS

Peak Hill – Doolgunna: Camel Hills – gold Neds Creek - gold Marvmia – aold Imbin – gold and base metals

FINAL RESULTS FROM RC DRILLING AT **CONTESSA-BRUMBY**

HIGHLIGHTS

- Maiden RC drillhole at Brumby intersects strongly anomalous hydrothermal system, with 37 metres of the 99 metre hole reporting greater than 0.1g/t gold.
- Intersections from LNRC019 include:
 - 6m at 0.18g/t gold from surface.
 - 7m at 0.51g/t gold from 45m (including 1m at 1.87g/t gold from 50m).
 - 4m at 0.18g/t gold from 59m.
 - 5m at 0.17g/t gold from 67m and
 - 5m at 0.34g/t gold from 83m.
- Additional aircore drilling is planned to scope the extent of the • gold-bearing system and test the 400m long gold trend identified from recent detailed mapping¹ at Brumby.
- The fourth and final RC hole drilled at the Contessa prospect • intersected low grade mineralisation, with a best intersection of 6m at 0.35g/t gold from 70m.

West Australian gold explorer Lodestar Minerals Limited (ASX:LSR, "lodestar" or "the Company") advises that assay results for the final two drill RC holes completed at the Contessa and Brumby prospects have been received.

The Contessa and Brumby prospects are located 170km north of Meekatharra, Western Australia within Lodestar's 100%-owned Ned's Creek project (see Figure 1). Both prospects are located within

¹ See Lodestar's ASX announcement dated 8th August 2016.

Electronic lodgement

a northeast trending regional tectonic zone along the southern boundary of the Marymia Inlier.

Figure 1 Location Plan - Brumby and Contessa prospects within the Ned's Creek tenements.

An induced polarisation chargeability anomaly at Contessa was tested by four RC drill holes drilled to depths of up to 249m, in July². Results for the final hole in the program at Contessa (LNRC018) have now been received with the interval from 70m to 76m reporting 0.35g/t gold from a zone of pyrite alteration within the host diorite. Assay results are reported in full in the Annexure.

As part of the Contessa program a single RC hole was completed to a depth of 99m at the Brumby prospect, 4 km west of Contessa (see Figure 1), to test a gold intersection in a shallow aircore drill hole completed in 2013 (LNR598). LNR598 was drilled to a depth of 25m and reported an intersection of 10m at 2.6g/t gold³, subsequently re-assayed as 1m split samples reporting 1m at 6.24g/t gold from 13m; 1m at 18.4g/t gold from 15m and 7m at 0.46g/t gold from 18m.

RC drill hole LNRC019 was drilled adjacent to LNR598 to a depth of 99m to test the vertical extent of alteration and mineralisation within the granite (see Figure 2). The host to mineralisation at Brumby is distinct from the diorite host at Contessa and is relatively fresh rock from close to surface. LNRC019 intersected wide intervals of altered granite with associated fine grained sulphide mineralisation. Significant results greater than 0.1g/t gold are listed in Table 1.

² See Lodestar's ASX announcement dated 22nd July 2016.

³ See Lodestar's ASX announcement dated 30th April 2013.

Figure 2 Location Plan LNRC019, showing gold in lag surface anomaly, Brumby Prospect.

The maiden RC results at Brumby include widespread low grade mineralisation in the primary zone, coincident with a large and sparsely tested gold in lag surface anomaly. In the context of the early stage exploration status and large size of the anomaly, which overlies weakly to moderately weathered basement, the results are highly significant and confirm Lodestar's belief that Brumby is a priority target for discovery of ore-grade disseminated or vein-hosted mineralisation.

Aircore drilling has proven very effective in the Contessa-Brumby area and a major aircore program is now planned to in-fill the area targeted by reconnaissance drilling in 2013 and also test the 400m long lag and rock chip anomaly identified during recent mapping of the Contessa granite.

Bill Clayton Managing Director Media Enquiries: Michael Vaughan, Fivemark Partners <u>michael.vaughan@fivemark.com.au</u> m: +61 422 602 720

Table 1Significant intersections >0.1g/t gold (100ppb)

HoleID	East	North	RL	Depth(m)	Dip	Azimuth	From	То	Au_ppb
LNRC018	788417	7192146	571.6	237	-60	310	70	71	428
							71	72	136
							72	73	209
							73	74	200
							74	75	664
							75	76	461
							65	70	116
LNRC019	783894	7191182	560	99	-90	0	1	2	106
							2	3	102
							3	4	468
							4	5	137
							5	6	147
							6	7	159
							14	15	491
							20	21	255
							26	27	342
							27	28	128
							28	29	171
							32	33	136
							41	42	218
							45	46	198
							46	47	257
							47	48	447
							48	49	273
							49	50	292
							50	51	1870
							51	52	257
							56	57	354
							58	59	202
							59	60	352
							60	61	149
							61	62	119
							62	63	132
							67	68	281
							68	69	196
							69	70	106
							70	71	154
							71	72	115
							76	77	474
							83	84	521
							84	85	631
							85	86	226
							86	87	234

Competent Person Statement

The information in this report that relates to Exploration Results is based on information compiled by Bill Clayton, Managing Director, who is a Member of the Australasian Institute of Geoscientists and has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Clayton consents to the inclusion in this report of the matters based on the information in the form and context in which it appears.

The information in this announcement that relates to previously released exploration results was disclosed under JORC 2012 in the ASX announcements dated 30th April 2013 "March 2013 Quarterly Activities and Cash Flow Report", 22nd July 2016 "Initial Results from Contessa IP Target and 8th August 2016 "Gold Target Extended at Brumby". These announcements are available to view on the Lodestar website. The company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement. The company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

ANNEXURE

HoleID	East	North	RL	Dip	Azimuth	From	То	Au_ppb	S_ppm
LNRC018	788417	7192146	571.6	-60	310	70	71	428	-50
						71	72	136	-50
						72	73	209	-50
						73	74	200	2150
						74	75	664	40000
						75	76	461	51500
						76	77	24	3000
						77	78	12	550
						78	79	23	800
						79	80	5	150
						80	81	7	200
						81	82	10	150
						82	83	3	100
						83	84	5	50
						84	85	3	-50
						85	86	3	-50
						86	87	9	-50
						87	88	3	100
						88	89	4	50
						89	90	2	-50
						90	91	3	50
						91	92	13	-50
						92	93	12	-50
						93	94	4	-50
						94	95	5	-50
						95	96	2	-50
						96	97	3	-50
						97	98	8	-50
						98	99 100	24	450
						99 100	100	15	150
						100	101	27	50 50
						101 102	102 103	11 7	-50
						102	105		-50 50
						105	104	10 6	50
						104 105	105	6	50 50
						105	100	3	100
						100	107	3	100
						107	108	3	1300
						108	110	4	10400
						105	111	3	3600
						111	112	9	750
						112	113	3	400
						113	114	2	450
						114	115	2	650

LNRC018	788417	7192146	571.6	-60	310	115	116	-1	500
	/0011/	,152140	57110		010	116	117	2	400
						117	118	2	100
						118	119	3	100
						119	120	2	100
						120	121	2	400
						120	122	2	200
						122	123	2	150
						123	124	2	300
						124	125	7	150
						125	125	2	300
						126	127	2	300
						127	128	3	500
						128	129	3	600
						129	130	2	150
						130	131	2	150
						131	132	3	150
						132	133	2	500
						133	134	2	450
						134	135	2	500
						135	136	-1	950
						136	137	-1	650
						137	138	2	700
						138	139	-1	800
						139	140	-1	700
						140	141	-1	700
						141	142	-1	500
						142	143	-1	800
						143	144	-1	900
						144	145	-1	550
						145	146	-1	500
						146	147	-1	1200
						147	148	-1	2050
						148	149	-1	1400
						149	150	-1	1050
						150	151	-1	750
						151	152	2	1050
						152	153	-1	150
						153	154	3	800
						154	155	-1	300
						155	156	-1	300
						156	157	-1	450
						157	158	-1	500
						158	159	-1	600
						159	160	2	350
						160	161	-1	200
						161	162	-1	550
						162	163	-1	500

LNRC018	788417	7192146	571.6	-60	310	163	164	-1	1850
						164	165	2	500
						165	166	5	900
						166	167	8	900
						167	168	3	650
						168	169	3	500
						169	170	3	450
						170	171	3	1000
						171	172	39	5800
						172	173	24	3350
						173	174	22	3600
						174	175	23	2850
						175	176	5	900
						176	177	10	1400
						177	178	9	1500
						178	179	4	1050
						179	180	2	800
						180	181	2	750
						181	182	2	950
						182	183	-1	600
						183	184	3	450
						184	185	-1	1000
						185	186	-1	550
						186	187	-1	950
						187	188	-1	550
						188	189	-1	550
						189	190	3	1100
						190	191	2	650
						191	192	-1	450
						192	193	-1	950
						193	194	-1	950
						194	195	3	750
						195	196	3	1300
						196	197	11	650
						197	198	8	5100
						198	199	4	400
						199	200	3	600
						200	201	3	700
						201	202	3	650
						202	203	3	1050
						203	204	2	700
						204	205	-1	750
						205	206	2	750
						206	207	2	600 1050
						207	208	2	1050
						208	209	2	800 1200
						209	210	2	1300
						210	211	2	1200

LNRC018	788417	7192146	571.6	-60	310	211	212	3	750
LINKCUIO	/0041/	/192140	571.0	-00	310	211	212	2	800
						212	213	3	1550
						213	214	3	650
						214	215	3 17	800
						215	210	17	1400
						210	217	4	1400
						217	210	-1	950
						210	220	4	1500
						220	220	4	1000
						220	222	- 2	1100
						222	223	2	800
						223	223	4	2150
						224	225	3	2150
						225	226	47	7050
						226	227	14	5400
						227	228	10	3400
						228	229	9	3500
						229	230	30	4400
						230	231	39	6050
						231	232	38	5850
						232	233	33	5100
						233	234	11	1800
						234	235	7	1600
						235	236	17	2050
						236	237	63	6600
LNRC019	783894	7191182	560	-90	0	0	1	83	500
						1	2	106	200
						2	3	102	500
						3	4	468	100
						4	5	137	50
						5	6	147	100
						6	7	159	-50
						7	8	9	-50
						8	9	7	-50
						9	10	8	-50
						10	11	13	50
						11	12	48	-50
						12	13	7	-50
						13	14	49	-50
						14	15	491	-50
						15	16	48	-50
						16	17	25	-50
						17	18	76	-50
						18 10	19 20	26	-50
						19 20	20	77	-50
						20	21	255	-50
						21	22	72	-50

INRC019 783894 7191182 560 -90 0 22 23 133 -50 24 24 56 -50 24 26 677 -50 25 26 67 -50 26 27 342 -50 26 27 342 -50 28 29 111 -50 29 30 97 -50 30 31 11 -50 30 31 11 -50 32 33 136 300 31 32 31 35 6 -50 35 36 20 100 32 33 136 300 33 34 4 50 35 6 -50 33 34 35 6 50 35 36 20 100 36 37 73 500 37 38 62 100 38 39 40 41 40 41 40 40 41 40 40 41											
24 25 71 50 25 26 67 50 26 27 342 50 27 28 128 50 28 29 171 50 29 30 97 -50 30 31 11 -50 32 33 136 300 31 32 131 50 32 33 136 500 33 34 4 50 34 35 66 -50 35 36 20 100 36 37 73 500 37 38 62 100 38 39 40 41 400 40 41 67 600 41 42 218 900 43 44 45 22 100 44 45 22 43 44 45 22 40 41 400 40 <	LNRC019	783894	7191182	560	-90	0	22	23	13		
25 26 67 50 26 27 342 50 27 28 128 29 171 50 29 30 97 50 30 31 111 50 30 31 312 11 50 32 33 136 300 31 32 13 136 300 33 34 4 50 34 35 6 50 35 36 20 100 35 36 20 100 38 39 85 300 37 38 62 100 38 39 85 300 39 40 41 40 40 41 40 40 41 42 218 900 41 42 218 900 43 44 45 400 44 45 200 43 44 45 400 44 45 200 50 51 1870 4900 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>23</td><td></td><td>56</td><td></td><td></td></td<>							23		56		
26 27 342 50 27 28 128 50 28 29 171 50 29 30 37 50 30 31 11 50 31 32 13 14 50 32 33 136 300 33 34 35 6 50 35 36 20 100 36 37 73 500 37 38 62 100 36 37 73 500 39 40 41 400 40 41 400 40 41 400 40 44 45 22 100 38 39 85 300 39 40 41 400 40 41 42 218 900 44 45 22 100 43 44 45 22 100 44 45 22 100 44 45 22 100 51 1							24	25	71	-50	
27 28 128 -50 28 29 171 -50 29 30 97 -50 30 31 11 -50 31 32 11 -50 32 33 136 300 33 34 4 50 34 35 36 20 100 36 37 73 500 37 38 62 100 36 37 73 500 37 38 62 100 38 39 40 41 400 40 41 67 600 41 42 218 900 42 43 63 600 44 45 22 100 44 45 22 100 44 45 22 100 45 42 138 60 44 45 22 100 50 257 140							25	26	67	-50	
28 29 171 -50 29 30 97 -50 30 31 11 -50 31 32 33 136 300 32 33 14 4 50 33 34 4 50 34 35 6 -50 35 36 20 100 36 37 73 500 37 38 62 100 38 39 85 300 39 40 41 62 218 900 42 43 63 600 41 42 218 900 44 44 45 20 100 45 46 198 650 44 45 218 900 44 45 2050 22 48 49 273 1400 47 48 447 2050 48 49 273 1200							26	27	342	-50	
29 30 97 -50 30 31 11 -50 31 32 11 -50 32 33 14 50 33 34 4 50 34 35 6 -50 35 36 20 100 36 37 73 500 37 38 62 100 38 39 85 300 39 40 41 400 40 41 62 100 38 39 85 300 39 40 41 400 40 41 62 100 43 44 45 400 44 45 22 100 45 46 47 257 1400 47 48 447 2050 48 49 273 1700 49 50 222 2200 50 51 1870 4900<							27	28	128	-50	
30 31 11 -50 31 32 11 -50 32 33 136 300 33 34 4 50 34 35 6 -50 35 36 20 100 36 37 73 500 37 38 62 100 38 39 40 41 400 40 41 67 600 41 42 218 900 42 43 63 600 43 44 45 400 40 41 45 400 44 45 22 100 45 46 198 650 46 47 257 1400 47 48 447 250 48 49 20 22 200 50 51 1870 4900 51 52 257 2700 52 53 54<							28	29	171	-50	
31 32 11 -50 32 33 136 300 33 34 4 50 34 35 6 20 100 36 37 73 500 37 38 62 100 38 39 85 300 39 40 41 67 60 41 42 43 63 40 41 67 600 41 42 218 900 42 43 63 600 43 44 45 400 44 45 122 100 45 46 122 100 45 46 122 100 46 47 225 1400 47 48 447 2050 48 49 273 1700 49 50 222 220 50 51 1870 4900 51 52 2							29	30	97	-50	
32 33 136 300 33 34 4 50 34 35 6 -50 35 36 20 100 36 37 73 500 37 38 62 100 38 39 85 300 39 40 41 400 40 41 63 600 41 42 218 900 42 43 63 600 43 44 45 22 100 45 46 1257 1400 44 45 22 100 45 46 1257 1400 47 48 447 2050 48 49 273 1700 49 50 292 2200 50 51 157 389 4200 51 52 257 2700 55 56 18 100 55 56 51							30	31	11	-50	
33 34 4 50 34 35 6 -50 35 36 20 100 36 37 38 62 100 37 38 62 100 38 39 85 300 39 40 41 400 40 41 67 600 41 42 218 900 42 43 64 198 650 44 45 22 100 45 46 198 650 46 47 257 1400 47 48 447 2050 48 49 220 220 50 51 1870 4900 51 52 257 2700 52 53 89 4200 53 54 3100 55 56 18 200 52 53 89 2050 55 56 18 200 54 59 202 1450 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>31</td><td>32</td><td>11</td><td>-50</td><td></td></td<>							31	32	11	-50	
34 35 6 -50 35 36 20 100 36 37 73 500 37 38 62 100 38 39 85 300 39 85 300 39 85 300 34 40 41 400 40 41 67 600 41 42 218 900 42 43 63 600 43 44 45 22 100 44 45 22 100 44 45 22 100 45 46 198 650 46 47 257 1400 47 48 447 2050 50 51 1870 4900 50 52 257 2700 52 53 89 4200 53 54 89 100 55 56 18 2100 54 55 411 3100 55 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>32</td><td>33</td><td>136</td><td>300</td><td></td></td<>							32	33	136	300	
35 36 20 100 36 37 73 500 37 38 62 100 38 39 40 41 600 40 41 67 600 41 42 218 900 42 43 63 600 43 44 45 400 44 45 22 100 45 46 198 630 46 47 257 1400 44 45 22 100 45 46 198 630 47 48 447 2050 48 49 273 1700 49 50 292 2200 50 51 1870 4900 51 52 257 2700 52 53 89 4100 54 89 4100 55 55 54 13100 55 56 18 2100							33	34	4	50	
36 37 73 500 37 38 62 100 38 39 85 300 39 40 41 400 40 41 67 600 41 42 218 900 42 43 63 600 43 44 45 20 40 44 45 22 43 44 45 400 44 45 22 100 45 46 198 650 46 47 257 100 47 48 447 2050 48 49 273 1700 49 50 292 2200 50 51 1870 4900 51 52 257 2700 52 53 89 4100 54 55 41 3100 55 56 18 2100 56 57 354 350							34	35	6	-50	
37 38 62 100 38 39 85 300 39 40 41 400 40 41 67 600 41 42 218 900 42 43 63 600 43 44 45 400 44 45 22 100 43 44 45 22 46 198 650 46 47 257 1400 47 48 447 2050 48 49 273 1700 49 50 292 2200 50 51 1870 4900 51 52 257 2700 52 53 89 4200 53 54 89 2050 54 55 41 3100 55 56 18 2100 56 57 354 89 2050 58 59 202 1450 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>35</td> <td>36</td> <td>20</td> <td>100</td> <td></td>							35	36	20	100	
38 39 85 300 39 40 41 400 40 41 67 600 41 42 218 900 42 43 63 600 43 44 45 22 100 44 45 22 100 45 46 198 650 46 47 257 1400 47 48 447 2050 48 49 273 1700 49 50 292 2200 50 51 1870 4900 51 52 257 2700 52 53 89 4200 53 54 8100 55 56 18 2100 55 56 18 2100 55 56 18 2100 55 56 18 2100 56 57 354 3550 57 354 3550 57 58 89 2050 58 59 202 1450 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>36</td> <td>37</td> <td>73</td> <td>500</td> <td></td>							36	37	73	500	
39 40 41 400 40 41 67 600 41 42 218 900 42 43 63 600 43 44 45 400 44 45 22 100 44 45 22 100 45 46 198 650 46 47 257 1400 47 48 447 2050 48 49 273 1700 49 50 292 2200 50 51 1870 4900 51 52 257 2700 52 53 89 4200 53 54 81 100 54 55 11 3100 55 56 18 2000 56 57 354 3550 57 58 89 2050 58 59 202 1450 60 61 149 1600<							37	38	62	100	
40 41 67 600 41 42 218 900 42 43 63 600 43 44 45 22 100 44 45 22 100 45 46 198 650 46 47 257 1400 47 48 447 2050 48 49 273 1700 49 50 292 2200 50 51 1870 4900 51 52 257 2700 52 53 89 4200 53 54 89 410 54 55 41 3100 55 56 18 2100 56 57 354 350 57 58 89 2050 58 59 202 1450 59 60 352 2000 61 62 119 1450 62 63 132							38	39	85	300	
41 42 218 900 42 43 63 600 43 44 45 400 44 45 22 100 45 46 198 650 46 47 257 1400 47 48 447 2050 48 49 273 1700 49 50 292 2200 50 51 1870 4900 51 52 257 2700 52 53 89 4200 53 54 89 4100 54 55 41 3100 55 56 18 2100 56 57 354 3550 57 58 89 2050 58 59 202 1450 59 60 352 2000 61 62 119 1450 62 63 132 1400 63 64 52 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>39</td><td>40</td><td>41</td><td>400</td><td></td></td<>							39	40	41	400	
42 43 63 600 43 44 45 400 44 45 22 100 45 46 198 650 46 47 257 1400 47 48 447 2050 48 49 273 1700 49 50 292 2200 50 51 1870 4900 51 52 257 2700 52 53 89 4200 53 54 89 4100 54 55 41 3100 55 56 18 2100 56 18 2100 55 56 18 2100 55 56 18 2100 59 202 1450 59 202 1450 59 202 1450 60 61 149 1600 61 62 119 1450 62 63 132 1400 63 64 <							40	41	67	600	
43 44 45 400 44 45 22 100 45 46 198 650 46 47 257 1400 47 48 447 2050 48 49 273 1700 49 50 292 2200 50 51 1870 4900 51 52 257 2700 52 53 89 4200 53 54 89 4100 54 55 41 3100 54 55 41 3100 55 56 18 2100 56 18 2100 55 56 18 2050 57 58 59 202 1450 59 60 352 2050 59 60 352 2050 58 59 202 1450 61 149 1600 61 149 1600 61 449 1450 62							41	42	218	900	
44 45 22 100 45 46 198 650 46 47 257 1400 47 48 447 2050 48 49 273 1700 49 50 292 2200 50 51 1870 4900 51 52 257 2700 52 53 89 4200 53 54 89 4100 54 55 41 3100 55 56 18 2100 56 57 354 3550 57 58 89 2050 58 59 202 1450 59 60 352 2000 61 149 1600 61 62 119 1450 62 63 132 1400 63 64 52 2100 64 65 9 600 65 66 7 600 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>42</td> <td>43</td> <td>63</td> <td>600</td> <td></td>							42	43	63	600	
45 46 198 650 46 47 257 1400 47 48 447 2050 48 49 273 1700 49 50 292 2200 50 51 1870 4900 51 52 257 2700 52 53 89 4200 53 54 89 4100 54 55 41 3100 55 56 18 2100 56 57 354 3550 57 58 89 2050 58 59 202 1450 59 60 352 2000 61 62 61 149 1600 61 62 119 1450 62 63 132 1400 63 64 52 2100 64 65 9 600 65 66 7 600 65 66 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>43</td><td>44</td><td>45</td><td>400</td><td></td></td<>							43	44	45	400	
46 47 257 1400 47 48 447 2050 48 49 273 1700 49 50 292 2200 50 51 1870 4900 51 1870 4900 52 257 2700 52 53 89 4200 53 54 89 4100 54 55 41 3100 54 55 41 3100 55 56 18 2100 56 57 354 3550 57 58 89 2050 58 59 202 1450 59 60 352 2000 60 61 149 1600 61 62 119 1450 62 63 132 1400 63 64 52 2100 64 65 9 600 65 66 7 600							44	45	22	100	
47 48 447 2050 48 49 273 1700 49 50 292 2200 50 51 1870 4900 51 52 257 2700 52 53 89 4200 53 54 89 4100 54 55 41 3100 54 55 41 3100 55 56 18 2100 56 57 354 3550 57 58 89 2050 58 59 202 1450 59 60 352 2000 60 61 149 1600 61 62 119 1450 62 63 132 1400 63 64 52 2100 64 65 9 600 65 66 7 600 65 66 7 600 65 67 760							45	46	198	650	
48 49 273 1700 49 50 292 2200 50 51 1870 4900 51 52 257 2700 52 53 89 4200 53 54 89 4100 54 55 41 3100 54 55 41 3100 55 56 18 2100 56 57 354 3550 57 58 89 2050 58 59 202 1450 59 60 352 2000 60 61 149 1600 61 62 119 1450 62 63 132 1400 63 64 52 2100 64 65 9 600 65 66 7 600 65 66 7 600 66 67 711 1050 67 68 281 2							46	47	257	1400	
49 50 292 2200 50 51 1870 4900 51 52 257 2700 52 53 89 4200 53 54 89 4100 54 55 41 3100 54 55 41 3100 55 56 18 2100 56 57 354 3550 57 58 89 2050 58 59 202 1450 59 60 352 2000 60 61 149 1600 61 62 119 1450 62 63 132 1400 63 64 52 2100 64 65 9 600 65 66 7 600 65 66 7 600 65 66 7 600 65 66 7 600 66 67 71 1050 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>47</td> <td>48</td> <td>447</td> <td>2050</td> <td></td>							47	48	447	2050	
50 51 1870 4900 51 52 257 2700 52 53 89 4200 53 54 89 4100 54 55 41 3100 55 56 18 2100 56 57 354 3550 57 58 89 2050 58 59 202 1450 59 60 352 2000 60 61 149 1600 61 62 119 1450 62 63 132 1400 63 64 52 2100 64 65 9 600 65 66 7 600 65 66 7 600 65 66 7 1050 66 67 71 1050 67 68 281 2000 68 69 196 2300							48	49	273	1700	
51 52 257 2700 52 53 89 4200 53 54 89 4100 54 55 41 3100 55 56 18 2100 56 57 354 3550 57 58 89 2050 58 59 202 1450 59 60 352 2000 60 61 149 1600 61 62 119 1450 62 63 132 1400 63 64 52 2100 64 55 9 600 65 66 7 600 65 66 7 600 65 66 7 1050 67 68 281 2000 66 67 71 1050 67 68 281 2000 68 69 196 2300							49	50	292	2200	
52 53 89 4200 53 54 89 4100 54 55 41 3100 54 55 56 18 2100 56 57 354 3550 57 58 89 2050 58 59 202 1450 59 60 352 2000 60 61 149 1600 61 62 63 132 1400 63 64 52 2100 64 65 9 600 65 66 7 600 64 65 9 600 65 66 7 600 65 66 7 600 66 67 71 1050 67 68 281 2000 68 69 196 2300							50	51	1870	4900	
53 54 89 4100 54 55 41 3100 55 56 18 2100 56 57 354 3550 57 58 89 2050 58 59 202 1450 59 60 352 2000 60 61 149 1600 61 62 119 1450 62 63 132 1400 63 64 52 2100 64 59 9 600 65 66 7 600 65 66 7 600 65 66 7 1050 67 68 281 2000 68 69 196 2300							51	52	257	2700	
54 55 41 3100 55 56 18 2100 56 57 354 3550 57 58 89 2050 58 59 202 1450 59 60 352 2000 60 61 149 1600 61 62 119 1450 62 63 132 1400 63 64 52 2100 64 65 9 600 65 66 7 600 66 67 71 1050 67 68 281 2000 68 69 196 2300							52	53	89	4200	
55 56 18 2100 56 57 354 3550 57 58 89 2050 58 59 202 1450 59 60 352 2000 60 61 149 1600 61 62 119 1450 62 63 132 1400 63 64 52 2100 64 65 9 600 65 66 7 600 65 66 7 600 65 66 7 1050 67 68 281 2000 68 69 196 2300							53	54	89	4100	
56 57 354 3550 57 58 89 2050 58 59 202 1450 59 60 352 2000 60 61 149 1600 61 62 119 1450 62 63 132 1400 63 64 52 2100 64 65 9 600 65 66 7 600 66 67 71 1050 67 68 281 2000 68 69 196 2300							54	55	41	3100	
57 58 89 2050 58 59 202 1450 59 60 352 2000 60 61 149 1600 61 62 119 1450 62 63 132 1400 63 64 52 2100 64 65 9 600 65 66 7 600 65 66 7 1050 67 68 281 2000 68 69 196 2300							55	56	18	2100	
58 59 202 1450 59 60 352 2000 60 61 149 1600 61 62 119 1450 62 63 132 1400 63 64 52 2100 64 65 9 600 65 66 7 600 66 67 71 1050 67 68 281 2000 68 69 196 2300							56	57	354	3550	
59 60 352 2000 60 61 149 1600 61 62 119 1450 62 63 132 1400 63 64 52 2100 64 65 9 600 65 66 7 600 66 67 71 1050 67 68 281 2000 68 69 196 2300							57	58	89	2050	
60 61 149 1600 61 62 119 1450 62 63 132 1400 63 64 52 2100 64 65 9 600 65 66 7 600 66 67 71 1050 67 68 281 2000 68 69 196 2300							58	59	202	1450	
61 62 119 1450 62 63 132 1400 63 64 52 2100 64 65 9 600 65 66 7 600 66 67 71 1050 67 68 281 2000 68 69 196 2300							59	60	352	2000	
62 63 132 1400 63 64 52 2100 64 65 9 600 65 66 7 600 66 67 71 1050 67 68 281 2000 68 69 196 2300							60	61	149	1600	
63 64 52 2100 64 65 9 600 65 66 7 600 66 67 71 1050 67 68 281 2000 68 69 196 2300							61	62	119	1450	
64 65 9 600 65 66 7 600 66 67 71 1050 67 68 281 2000 68 69 196 2300							62	63	132	1400	
65 66 7 600 66 67 71 1050 67 68 281 2000 68 69 196 2300							63	64	52	2100	
66 67 71 1050 67 68 281 2000 68 69 196 2300							64	65	9	600	
6768281200068691962300							65	66	7	600	
68 69 196 2300							66	67	71	1050	
							67	68	281	2000	
							68	69	196	2300	
69 /0 106 950							69	70	106	950	

LNRC019	783894	7191182	560	-90	0	70	71	154	3850
						71	72	115	5900
						72	73	94	3850
						73	74	45	800
						74	75	52	1000
						75	76	46	1000
						76	77	474	1500
						77	78	85	350
						78	79	85	350
						79	80	75	600
						80	81	69	600
						81	82	23	200
						82	83	56	1250
						83	84	521	2600
						84	85	631	4200
						85	86	226	2550
						86	87	234	2150
						87	88	106	600
						88	89	42	450
						89	90	9	450
						90	91	8	150
						91	92	10	300
						92	93	13	400
						93	94	11	450
						94	95	10	600
						95	96	47	650
						96	97	-1	300
						97	98	-1	200
						98	99	4	300

JORC Code, 2012

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (egg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Samples were collected by 5.6 inch face sampling RC hammer drilling. 1 metre samples were collected from the cyclone in plastic bags and placed in sequence on the ground. Corresponding 2.5kg samples for assay were collected from a cone splitter in numbered calico bags or 5 metre composite samples were collected by PVC spear from the plastic bags. Sample representivity is maintained by placing samples in a pre-numbered calico bag with a corresponding sample book entry. Certified reference materials, field duplicates and laboratory repeat samples are analysed routinely. Drill hole locations were recorded using a hand-held GPS.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc.). 	 RC drilling was used throughout the program using a 5 .6 inch diameter face sampling hammer.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Sample recovery is recorded subjectively in the sample ledger and in the digital database. Use of industry standard drilling techniques; cyclone and splitter were cleaned regularly to minimise contamination. Samples were collected as bulk material that may contain unrecognised particulate gold; however a relationship between sample recovery and grade has not been established.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 Samples are logged for geology and mineralisation; - early stage exploration drilling not intended to support Mineral Resource estimation. Logging is a qualitative, abbreviated description of sample material. Total hole/sample was logged at 1 metre intervals.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of 	 Not applicable. Split sample collected from cone splitter and placed in calico sample bag or 5 metre composite sample collected from plastic bulk sample bag. No wet samples were encountered; sample recoveries were good, estimated differences in expected sample recoveries are noted in the sample ledger.

Criteria	JORC Code explanation	Commentary
	 the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Sample preparation involves drying, crushing to 3mm, a 2.4kg sample is pulverized to 90% passing minus 75 microns. A 40g sub-sample is collected for assay by rotary splitter. Replicate samples are included in the assay report. Field duplicates were routinely submitted for assay. Grain size and form of gold is currently unknown.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 Using a 40gm charge, gold is determined by aqua regia digest and ICP-AES (Method AR001). The method approximates a total extraction of gold. Laboratory QAQC involves the use of internal laboratory standards, duplicate and replicate samples. Lodestar's certified reference standards and blanks were inserted throughout the programme (1:20). Results indicate that sample assay values are accurate and repeatable.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 There has been no independent verification of assay data. No twinned holes have been completed. Field and laboratory data are collected electronically and entered into a relational database. Data collection protocols are recorded in Lodestar's operation manual. There has been no adjustment to assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill hole collar locations were determined with a Garmin 64: handheld GPS receiver. Accuracy i better than +/-10 metres. Downhole surveys were obtained using a Reflex single shot EZ-Shot down hole camera. Collar coordinates were recorded in MGA94 Zone 50 grid. Local elevation is recorded from the digital elevation model (DEM) acquired with aeromagnetic data using a calibrated Bendix/King KRA 405 radar altimeter or estimated from the GPS reading.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill hole spacing is 100 metres to 140 metres over a strike length of approximately 70 metres. The drilling is an early stage exploration programme with insufficient information for Mineral Resource estimation. No compositing has been applied to the sampling data; 5 metre composite samples were collected over selected intervals within the oxide zone.
Orientation of data in relation to geological	• Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known,	 The drilling was designed to test an induced polarization (IP) chargeable anomaly thought represent a

Criteria	JORC Code explanation	Commentary
structure	 considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 concentration of sulphide mineralisation within a sheared diorite unit. The nature of the mineralisation and possible controls are currently unknown. A single hole tested an earlier intersection of gold mineralisation in shallow aircore drilling at the Brumby prospect. The drilling is oriented perpendicular to the strike of regional structures and geological contacts however orientation of mineralised structures is unknown.
Sample security	• The measures taken to ensure sample security.	 Samples are stored at Lodestar's exploration camp under supervision prior to dispatch by licenced courier service (TOLL IPEC) or Lodestar staff to Bureau Veritas (Ultratrace) Laboratories.
Audits or Reviews	• The results of any audits or reviews of sampling techniques and data.	 No audits or reviews have been carried out.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Contessa and Brumby are located on E52/2456, within Lodestar's Ned's Creek project. The tenement is owned by Audacious Resources, a wholly-owned subsidiary of Lodestar Minerals and expires on 16/09/2020. The tenement is within the native title claim WC99/46 of the Yugunga-Nya Group. Lodestar has signed a Heritage Agreement with the traditional owners to carry out mineral exploration on the tenement.
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	 Exploration commenced at McDonald Well in the late 1960's, WMC explored for Zambian Copper Belt style mineralisation and completed regional geological mapping and sampling, followed by minor percussion drilling. CRA Exploration completed regional mapping and auger sampling, also at McDonald Well. No significant anomalies were identified on the tenements. Minor exploration drilling by Barrick and CRA Exploration east and south of Contessa intersected ultramafic lithologies, confirming the extent of the greenstone sequence in this area. There has been no material exploration by other parties over the Contessa area
Geology	 Deposit type, geological setting and style of mineralisation. 	 The geology of the project area comprises the northern margin of the Proterozoic Yerrida Basin. The geology forms two discrete units; a) Proterozoic sediments of the Yerrida Basin that are prospective for sediment-hosted copper and base metal mineralisation in black shale and carbonate sequences, with evidence of secondary and primary copper mineralisation in the Thaduna district. b) Archaean basement rocks on the northern margin

Criteria	JORC Code explanation	Commentary
		of the Yerrida Basin. The basement-sediment contact trends east-west and Lodestar's exploration has identified extensive gold anomalism adjacent to this contact. The basement consists of granite and fringing mafic to intermediate and ultramafic rocks that are not widely exposed at surface. The mafic-ultramafic rocks and the adjacent granite host the gold mineralisation and are thought to be Archaean in age and similar to the sequences that host the lode gold deposits in the Plutonic and Baumgarten greenstone belts.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Tabulated data is provided in Table 1 and the Annexure, attached.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Averaging of intervals at greater than 0.1g/t gold, minimum grade 0.1g/t gold, no internal dilution and no maximum cut-off applied as grades are less than 2g/t.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Foliation measurements from field mapping are generally sub vertical and trend in an east north-easterly or north west direction, parallel to the main trends in aeromagnetic data. There is no structural information from the drilling. Only down hole intervals are reported, true widths are not known.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	• A plan showing drill collar location (Figure 2) with results greater than 0.1g/t gold is included in this report.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting	 All relevant sample data is reported in the Annexure.

 Criteria
 JORC Code explanation
 Commentary

 of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.
 Formed and a commentary

Criteria	JORC Code explanation	Commentary
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	• None to report.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	• Extensive zones of anomalous gold greater than 100ppb (0.1g/t) have been reported in drilling at Contessa and Brumby. The anomalies remain open at depth and along strike along the granite contact. Further work is planned to in-fill drill areas along the granite contact and to increase drill coverage of the surface gold anomalies at Brumby.