

FIRST RC RESULTS FROM GIDGEE FLATS EXTEND STRIKE OF MINERALISATION BY 50%

Highlights

- Assay results received for the first six holes of a recently completed 26 hole program at Contessa, Gidgee Flat and Central Park prospects at Ned's Creek.
- Three holes completed at Gidgee Flat successfully extended mineralisation on a single drill line 60m down dip and 50m along strike:
 - LNRC053 6m at 2.8g/t Au from 163m, including 2m at 5.9g/t Au from 166m
 - LNRC052 6m at 2.4g/t Au from 97m, including 2m at 5.7g/t Au from 98m
 - LNRC051 1m at 3.0g/t Au from 88m
- Drilling at Contessa confirmed mineralisation up-dip of the previous high-grade intercept of 4m at 74g/t Au in LNRC026:
 - LNRC048 12m at 1.5g/t Au from 126m, including 1m at 9.2g/t Au from 135m
- Remaining results expected in November, subject to laboratory availability.

West Australian gold explorer Lodestar Minerals Limited ("Lodestar" or "the Company", ASX:LSR) has received assay results for the first of 26 RC drill holes completed on the Company's 100%-owned Ned's Creek project (see Figure 1). The RC program was designed to delineate mineralisation near previous intersections in greater detail and to scope the potential for additional mineralisation along strike and down dip.

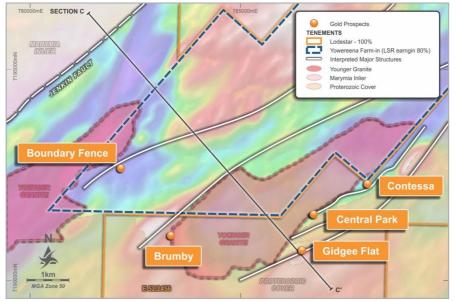


Figure 1 Prospect Location Plan - Ned's Creek project on background aeromagnetic image.

Lodestar Minerals Limited 1st Floor, 31 Cliff Street Fremantle, WA 6160 PO Box 584 Fremantle, WA 6959 ABN: 32 127 026 528

These initial results are from three of eight holes completed at Contessa and three of fourteen holes completed at Gidgee Flat which are the only assay results received to date. The remaining results, including four holes drilled at Central Park, are expected throughout November and the Company has been informed of possible delays due to high volumes of samples currently at the laboratory.

Significant results greater than 1g/t Au are listed in Table 1 and results from all six holes are listed in the Annexure.

GIDGEE FLAT

Mineralisation at Gidgee Flat has been defined by previous drilling in an area covering 140m by 170m. Interpretation of results to date indicates mineralisation runs along strike northeast to southwest and dips to the northwest.

Three RC holes targeted the extension of the most southern line of previous drilling of the main zone of mineralisation (see Figure 2).

LNRC053 targeted the syenite contact 50m along strike and south west of LNRC039 (11m at 5.8g/t Au, see Lodestar's ASX announcement dated 22nd May 2018). LNRC053 intersected the continuation of mineralisation below the contact, reporting **6m at 2.8g/t Au from 163m**, **including 2m at 5.9g/t Au from 166m** (see Figure 3) within sheared and pyritic mafic rocks. The mineralisation remains open down-dip and along strike to the southwest.

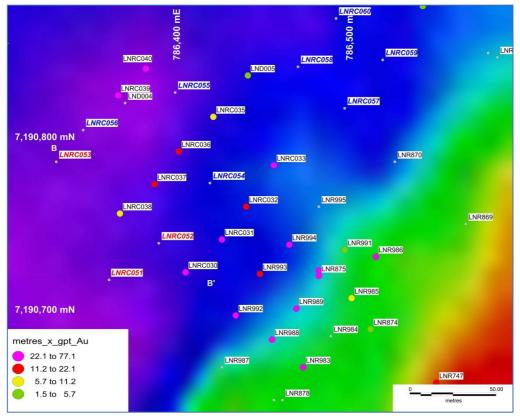


Figure 2 Collar location plan - Gidgee Flat (MGA94) on aeromagnetic image. Red type = assays received; Blue type = assays pending.

LNRC052 tested the area between LNRC030 (10m at 2.0g/t Au from 71m, see Lodestar's ASX announcement dated 9th May 2018) and LNRC038 to better define the mineralisation. LNRC052 intersected **6m at 2.4g/t Au from 97m, including 2m at 5.7g/t Au from 98m** within pyritic mafic rocks.

LNRC051 targeted an area 30m south west and along strike from LNRC030 (10m at 2.0g/t Au, see Lodestar's ASX announcement dated 9th May 2018) and intersected **1m at 3g/t Au** from 88m, within a 20m interval of anomalous gold (>0.1g/t Au).

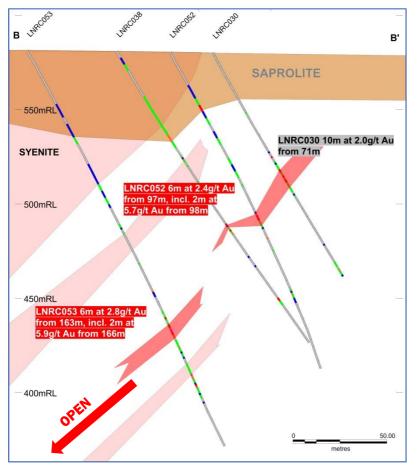


Figure 3 Gidgee Flat drill cross section looking north east.

CONTESSA

Two RC holes, LNRC047 and LNRC048 targeted mineralisation below and above the highgrade mineralisation in LNRC026 (see Lodestar's ASX announcement dated 18th May 2018). The holes were collared 20m and 30m northwest and southeast of LNRC026, respectively (see Figure 2).

LNRC048, targeting mineralisation 20m up dip from LNRC026, intersected **12m at 1.5g/t Au from 126m, including 1m at 9g/t Au from 135m.** LNRC047 was targeting mineralisation below LNRC026 but deviated from the planned trajectory and did not intersect significant mineralisation (see Figure 3). If the high-grade mineralisation has a plunging orientation as implied by drilling, it is unlikely that LNRC047 has effectively tested the target.

A third hole, LNRC049, drilled on a traverse 40m northeast and along strike from LNRC026 and did not intersect significant mineralisation. Results are awaited for 2 additional holes drilled on this traverse and another 3 holes a further 40m along strike.

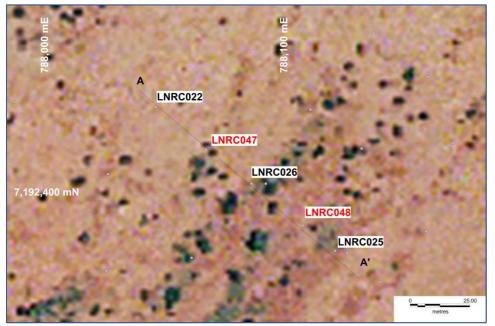
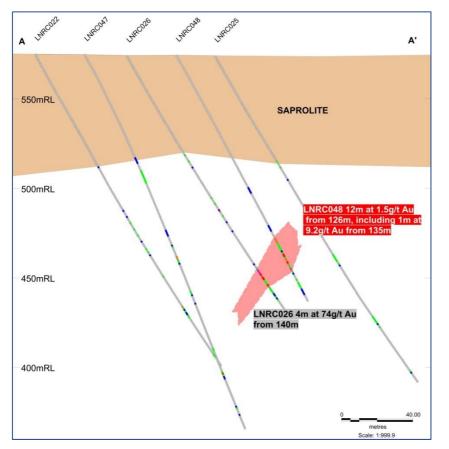
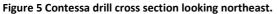




Figure 4 Collar location plan - Contessa (MGA94).

NEXT STEPS

The initial results from Gidgee Flat have extended the footprint of the gold system and the wide distribution of gold mineralisation and alteration in LNRC053 suggests that the system is increasing in intensity with depth.

The structural control on high-grade mineralisation at Contessa is unknown and can only be resolved once all the assay results have been received. Samples for the remaining 20 RC holes are currently at the laboratory for processing and results are expected throughout the remainder of November.

-	_			-							Au
Hole_ID	Easting	Northing	RL	Depth	DrillType	Dip	Azimuth	From	То	Length	g/t
LNRC047	788068.1	7192417	562.5	228	RC	-60.7	132.11	194	195	1	1.11
LNRC048	788108.5	7192386	562.2	156	RC	-60.42	132.9	126	127	1	1.76
								127	128	1	1.49
								131	132	1	1.13
								135	136	1	9.27
LNRC051	786361.7	7190717	567.8	204	RC	-60.17	136.9	82	83	1	1.17
								88	89	1	3.05
LNRC052	786390.4	7190738	568.1	186	RC	-61.09	132.46	32	36	4	1.08
								98	99	1	4.86
								99	100	1	6.61
								100	101	1	1.15
LNRC053	786331.2	7190785	569.3	234	RC	-60.02	129.43	159	160	1	1.68
								163	164	1	1.24
								164	165	1	1.15
								166	167	1	5.5
								167	168	1	6.41
								168	169	1	2.09
								192	193	1	8.64
								198	199	1	1.45

Table 1 Significant Assays >1g/t Au

Contacts

Bill Clayton

Managing Director info@lodestarminerals.com.au +61 8 9435 3200

Media enquiries

Michael Vaughan, Fivemark Partners michael.vaughan@fivemark.com.au +61 422 602 720

About Lodestar

Lodestar Minerals is an active Western Australian gold explorer with a prospective tenement package spanning more than 2,000km² at the edge of the Pilbara and Yilgarn Cratons. Lodestar has three main projects – Ned's Creek, Camel Hills and Imbin – and is also earning an 80% interest in Vango Mining's Yowereena gold project which is adjacent to Ned's Creek.

Lodestar's main focus is Ned's Creek where it was first to identify the potential for syenite intrusionrelated gold mineralisation within a craton margin setting and subsequently has made greenfields gold discoveries at the Contessa and Gidgee Flat prospects. Contessa is one of many partly explored gold anomalies located within a large shear zone developed along the southern margin of a 6 kilometre long, elongate composite granite intrusion. The Yowereena gold project provides Lodestar with access to the unexplored northern margin of the Contessa granite and under explored prospective Archaean greenstone terrane within a region of major gold endowment and production.

Competent Person Statement

The information in this report that relates to Exploration Results is based on information compiled by Bill Clayton, Managing Director, who is a Member of the Australasian Institute of Geoscientists and has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Clayton consents to the inclusion in this report of the matters based on the information in the form and context in which it appears.

The information in this announcement that relates to previously released exploration results was disclosed under JORC 2012 in the ASX announcements dated

- 9th May 2018 "First Results from Gidgee Flat Extend Gold Discovery".
- 22nd May 2018 "Outstanding RC Drill Results at Gidgee Flat and Contessa".
- 12th June 2018 "Confirmation of Exceptional Gold Grades at Contessa".

These announcements are available to view on the Lodestar website. The company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement. The company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

The information in this announcement that relates to previously released exploration results was disclosed under JORC 2012 in the ASX announcement dated 13th November 2017 "Contessa Initial Diamond Drilling Results". This announcement is available to view on the Lodestar website. The company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement. The company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

ANNEXURE: Assay results >0.1g/t Au

Hole_ID	Easting	Northing	RL	Depth	DrillType	Dip	Azimuth	From	То	Length	Au g/t
LNRC047	788068.1	7192417	562.47	228	RC	-60.7	132.11	72	76	4	0.12
								76	80	4	0.11
								118	119	1	0.14
								124	125	1	0.82
								125	126	1	0.61
								126	127	1	0.18
								127	128	1	0.19
								145	146	1	0.23
								146	147	1	0.28
								179	180	1	0.45
								180	181	1	0.34
								193	194	1	0.39
								194	195	1	1.11
								195	196	1	0.44
								215	216	1	0.23
LNRC048	788108.5	7192386	562.18	156	RC	-60.4	132.9	116	117	1	0.97
								117	118	1	0.56
								118	119	1	0.75
								119	120	1	0.48
								120	121	1	0.24
								121	122	1	0.16
								122	123	1	0.27
								123	124	1	0.16
								125	126	1	0.35
								126	127	1	1.76
								127	128	1	1.49
								128	129	1	0.46
								129	130	1	0.67
								130	131	1	0.82
								131	132	1	1.13
								132	133	1	0.98
								133	134	1	0.32
								134	135	1	0.11
								135	136 137	1	9.27
								136 137	137	1	0.81 0.28
								137	138	1	0.28
								142	145	4	0.15
LNRC049	788133.1	7192418	562 07	174	RC	-59.7	131.28	52	56	4	0.29
	,00133.1	,172410	302.07	1/4		-33.7	131.20	68	72	4	0.18

Hole_ID	Easting	Northing	RL	Depth	DrillType	Dip /	Azimuth	From	To L	.ength	Au g/t
LNRC051	786361.7	7190717	567.82	204	RC	-60.2	136.9	24	28	4	0.11
								28	32	4	0.15
								52	56	4	0.14
								68	72	4	0.61
								72	76	4	0.42
							_	80	82	2	0.20
							_	82	83	1	1.17
							_	83	84	1	0.13
							_	87	88	1	0.99
							_	88	89	1	3.05
								89	90	1	0.92
LNRC052	786390.4	7190738	568.08	186	RC	-61.1	132.46	28	32	4	0.21
							_	32	36	4	1.08
							_	40	44	4	0.17
							_	52	56	4	0.24
							_	64	68	4	0.35
							_	72	76	4	0.15
							_	80	81	1	0.28
							_	97	98	1	0.75
							_	98	99	1	4.86
							_	99	100	1	6.61
							_	100	101	1	1.15
							_	101	102	1	0.30
							_	102	103	1	0.80
							_	103	104	1	0.29
							_	104	105	1	0.15
							_	111	112	1	0.99
							_	118		1	0.37
							_	141	142	1	0.12
							_	143	144	1	0.98
							_	144	145	1	0.18
							400.40	145	146	1	0.11
LNRC053	786331.2	7190785	569.28	234	RC	-60	129.43	52	56	4	0.14
							_	80	84	4	0.12
							_	88	92	4	0.26
							_	104	105	1	0.28
							_	105	106	1	0.32
							_	109	110	1	0.18
							-	127	128	1	0.11
							_	143	144	1	0.52
							_	155	156	1	0.17
								156	157	1	0.26

Hole_ID	Easting	Northing	RL	Depth	DrillType	Dip	Azimuth	From	To L	.ength	Au g/t
_					<u>,</u>			158	159	1	0.47
		-						159	160	1	1.68
		-						160	161	1	0.42
		-						162	163	1	0.34
		-						163	164	1	1.24
		-						164	165	1	1.15
		-						165	166	1	0.77
		-						166	167	1	5.50
		-						167	168	1	6.41
		-						168	169	1	2.09
		-						169	170	1	0.92
								170	171	1	0.75
								172	173	1	0.19
								173	174	1	0.47
								174	175	1	0.39
								175	176	1	0.44
								176	177	1	0.56
								177	178	1	0.21
								178	179	1	0.39
								180	181	1	0.15
								181	182	1	0.11
								186	187	1	0.11
								187	188	1	0.23
								188	189	1	0.15
								189	190	1	0.27
								190	191	1	0.33
								191	192	1	0.33
								192	193	1	8.64
								193	194	1	0.55
								194	195	1	0.65
								195	196	1	0.25
								196	197	1	0.15
								198	199	1	1.45
								199	200	1	0.72
								200	201	1	0.24
								201	202	1	0.14
								202	203	1	0.17
								204	205	1	0.16
								205	206	1	0.11

JORC Code, 2012 Edition

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 RC holes were sampled at 1m intervals throughout, with 4m composites also collected through weathered or less altered material. Samples collected from the cyclone were laid in plastic bags in sequence on the ground in rows of 20. Sample representivity is maintained by placing the samples in a pre-numbered calico bag with a corresponding sample book entry. Certified reference materials, field duplicates and laboratory repeat samples are analysed routinely. 1m RC samples were collected as a 2.5kg split in calico bags attached to the on-board cone splitter. Composite 4m metre samples were collected by spearing down the side of the plastic bag using a PVC spear and combined to create a 2.5 to 3.0kg composite sample. Approximately 2.5kg of material from chips was submitted to a commercial laboratory for drying, crushing, and pulverising to produce a 40g charge for fire assay of gold and determination of sulphur by LECO furnace.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 RC drilling using a 5.5" face sampling hammer. RC holes were surveyed with a REFLEX EZ-GYRO north-seeking gyro survey tool at 30m intervals and at end of hole.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Sample recoveries and wet samples were monitored and recorded qualitatively in Lodestar's drill hole database. Recoveries were generally 80 -100%. High pressure air used to maintain a dry sample and drill sampling equipment was cleaned regularly to minimise contamination. No relationship between sample recovery and grade has been established.

Criteria	JORC Code explanation	Commentary
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Chip samples were routinely geologically logged throughout the hole. Logging is qualitative in nature. All RC holes are geologically logged in full.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being 	 Individual 1m split samples collected from the cone splitter are submitted for assay. Selected intervals were composited from bagged 1m samples to produce a 2.5kg 4m composite using a PVC spear. All samples for assay are stored in pre-numbered bags and submitted to Bureau Veritas Laboratories for sample preparation and analysis. Sample preparation for drill samples involves drying the whole sample, crushing to 3mm and pulverising to 90% passing -75 microns. The pulverised sample was split with a rotary sample divider to obtain a 40 gram charge. Duplicate field samples, certified reference standards and laboratory repeats are used to monitor satisfactory reproducibility. Sample size is appropriate for early exploration drilling where mineral grainsize is unknown.
Quality of assay data and laboratory tests	 sampled. The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Following sample preparation a 40 gram charge was submitted for fire assay (with ICP-AES finish); the detection limit is 1ppb. 1:20 duplicate samples retained for analysis after fine crushing. 1:20 pulverised samples analysed for satisfactory grind size. The fire assay method is considered an estimation of total gold content. No geophysical tools were used to determine any element concentrations. Laboratory QAQC includes the use of laboratory standards and replicates; Review of Lodestar's reference standards and field duplicates indicate acceptable accuracy and precision.

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Significant intersections have not been independently validated at this time. Twinned holes were not included in this program. Field and laboratory data are collected electronically and entered into a relational database. Data collection protocols are recorded in Lodestar's operation manual. There has been no adjustment to assay data.
	• Discuss any adjustment to assay data.	 Reported intersections use a 0.5g/t Au lower cut- off and up to 2m of internal dilution
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill hole locations have been surveyed with DGPS. Drill hole coordinates were recorded in MGA94 Zone 50 grid. The topography within prospect areas is generally flat; In the Contessa and Gidgee Flat areas drill hole collar RL's have been adjusted to the DEM surface derived from a detailed aeromagnetic survey using Bendix/King radar altimeter equipment with a resolution of 0.3m and recorded from the DGPS collar pick-up.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been 	 Drill holes at Contessa were placed at a nominal hole spacing of 50m (north-south) and 40m (eastwest) and at Gidgee Flat 50m (north-south) and 30m (east-west). The drilling subject of this announcement has not been used to prepare Mineral Resource estimates at this stage.
Orientation of data in relation to geological structure	 applied. Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Compositing has been applied for the RC samples. At Gidgee Flat the target mineralisation is believed to dip towards grid north at approximately 70 degrees, indicating intersection widths are around 1.5 times true thickness. RC and diamond holes are oriented perpendicular to the regional strike of stratigraphy. At Contessa the target mineralisation is also believed to dip towards the north, based on limited diamond drilling, but awaits confirmation from additional drilling. No orientation based sampling bias has been identified in the data.
Sample security	• The measures taken to ensure sample security.	 Samples were stored at Lodestar's exploration camp in sealed bags under supervision prior to dispatch by Lodestar contractors and registered courier to Bureau Veritas - UltraTrace Laboratories.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	• No audits or reviews have been carried out.

Criteria	Commentary
Mineral tenement and land tenure status	 Contessa and Gidgee Flat are located on E52/2456, within Lodestar's Ned's Creek project. The tenement is owned by Audacious Resources, a wholly-owned subsidiary of Lodestar Minerals and expires on 16/09/2020. The tenement is within the native title claim WC99/46 of the Yugunga-Nya Group. Lodestar has signed a Heritage Agreement with the traditional owners to carry out mineral exploration on the tenement. Yowereena – Contessa may extend into M52/780. The tenements on which the historic exploration was completed and in which Lodestar is earning an 80% interest are held by Vango Mining Limited and Dampier (Plutonic) Pty Ltd (a wholly-owned subsidiary of Vango Mining Limited). M52/780 expires on 26/09/2034 (VANGO 60/100:DAMPIER 40/100). Lodestar has earnt an 80% interest in M52/780.
Exploration done by other parties	• Exploration commenced at McDonald Well in the late 1960's, WMC explored for Zambian Copper Belt style mineralisation and completed regional geological mapping and sampling, followed by minor percussion drilling. CRA Exploration completed regional mapping and auger sampling, also at McDonald Well. No significant anomalies were identified on the tenements. Minor exploration drilling by Barrick and CRA Exploration east and south of Contessa intersected ultramafic lithologies, confirming the extent of the greenstone sequence in this area. There has been no material exploration by other parties over the Contessa area.
	• Gold exploration in the Plutonic Well greenstone belt commenced in 1986. Marymia Exploration, in their 1994 report, state that there had been little or no previous exploration within the Yowereena tenements.
Geology	• The geology of the project area comprises the northern margin of the Proterozoic Yerrida Basin. The geology forms two discrete terranes; Proterozoic sediments of the Yerrida Basin that are prospective for sediment-hosted copper and base metal mineralisation in black shale and carbonate sequences, with evidence of secondary and primary copper mineralisation in the Thaduna district, overlie Archaean basement rocks on the northern margin of the Yerrida Basin. The basement-sediment contact trends east-west and Lodestar's exploration has identified extensive gold anomalism adjacent to this contact. The basement consists of granite and fringing mafic to intermediate and ultramafic rocks that are not well exposed at surface. The mafic-ultramafic rocks and the adjacent granite that hosts gold mineralisation are thought to be Archaean in age but may be part of the Glenburgh orogenic event along the northern Yilgarn margin. Identification of syenite-hosted, intrusion-related gold mineralisation indicates that this region differs from other lode gold occurrences in the Plutonic Well greenstone belt and the surrounding Proterozoic fold belt and does not form part of the adjacent Marymia Inlier.
Drill hole information	Tabulated data is provided in Table 1 and the Annexure.
Data aggregation methods Relationship between mineralisation widths and intercept lengths	 Assay data are reported as individual 1 metre or 4 metre composites for RC samples. Selected RC intervals are reported as aggregates of individual 1m samples in zones where mineralisation was observed. Drilling was oriented towards 130 degrees, perpendicular to the regional strike of stratigraphy. Measurement of foliation in the area indicates steep dips however mineralisation appears to dip moderately to steeply to the north. The actual dip of mineralisation and its relationship to the drill hole intersections has not been confirmed at Contessa and at Gidgee Flat is estimated to be 70% of true width.
Diagrams	• See Figures 2 to 5.

Balanced reporting	All drill holes are reported in the Annexure.
Other substantive exploration data	None to report.
Further Work	 Contiguous supergene and transition zone gold mineralisation was intersected by aircore drilling. RC drilling confirmed a bedrock source, extended the mineralisation and demonstrated a spatial association with the granite contact at Gidgee Flat and a major shear zone on the granite contact at Contessa. Diamond drilling has confirmed the potential for high-grade gold in shoots and lenses associated with the contact between syenite intrusives and altered mafic host rocks at Gidgee Flat and within intensely altered diorite at Contessa. Additional drilling is required to scope mineralisation and define a potential resource.