COMPANY SNAPSHOT

LODESTAR MINERALS LIMITED
ABN: 32127026528

CONTACT DETAILS

Bill Clayton, Managing Director +61 894233200

Registered and Principal Office Level 2, 55 Carrington Street
Nedlands, WA 6009
PO Box 985
Nedlands, WA, 6909
info@lodestarminerals.com.au
www.lodestarminerals.com.au

CAPITAL STRUCTURE

Shares on Issue:
453,294,938 (LSR)

Options on Issue:
45,357,092 (listed)
41,050,127 (unlisted)

ASX: LSR

PROJECTS

Peak Hill - Doolgunna:
Camel Hills - gold
Neds Creek - gold
Marymia - gold
Imbin - gold and base metals

AIRCORE DRILL RESULTS FROM CONTESSA - BRUMBY GOLD PROSPECTS

Contessa

- Numerous intercepts of supergene gold from in-fill drilling, including:
- 4 m at $4.3 \mathrm{~g} / \mathrm{t}$ gold from 48 m in LNR804
- 8 m at $3.35 \mathrm{~g} / \mathrm{t}$ Au from 48 m in LNR810
- 20 m at $1.61 \mathrm{~g} / \mathrm{t}$ gold from 48 m in LNR796
- $\mathbf{1 2 m}$ at $1.3 \mathrm{~g} / \mathrm{t}$ gold from 48 m in LNR800
- $\mathbf{1 2 m}$ at $1.6 \mathrm{~g} / \mathrm{t}$ gold from 44 m in LNR795
- Significant anomalous gold intersected in the deeper transition zone, including:
- 4 m at $1.7 \mathrm{~g} / \mathrm{t}$ gold from 84 m in LNR792
- 3 m at $1.0 \mathrm{~g} / \mathrm{t}$ gold from 96 m in LNR806

- Mineralisation occurs within a broad W to WNW trending corridor, spans a currently defined area of 200 m by 100 m and is open to the west.
- Transition zone encountered in the west of the system, a potentially significant indicator of the location of the bedrock mineralisation source being targeted.
- Further interpretation of all results required before the next phase of work, expected to be RC drilling.

Brumby

- Important discovery of new greenfield area of syenite-hosted gold mineralisation on the western contact of intrusive complex.
- First-pass shallow drilling 300m west and south of previous drilling reported anomalous gold at grades in line with expectations for syenite-hosted deposits:
- 4 m at $1.0 \mathrm{~g} / \mathrm{t}$ gold from 20 m and 3 m at $1.6 \mathrm{~g} / \mathrm{t}$ gold from 40 m to end of hole in LNR824
- 4 m at $1.3 \mathrm{~g} / \mathrm{t}$ from 4 m in LNR829
- Confirms geological model whereby the structural contact is an important control for gold targets and this area requires systematic drilling.
- Less than 5% of 1.2 km of contact area currently drill tested to a limited depth.

West Australian gold explorer Lodestar Minerals Limited (ASX : LSR, "Lodestar' or "the Company") advises that assay results for the recently completed aircore drilling program at the Contessa and Brumby prospects have been received. Contessa and Brumby are located approximately 4 km apart within the Company's 100%-owned Ned's Creek project, 170km north east of Meekatharra, in Western Australia (see Figure 1).

Figure 1: Location Plan, Contessa and Brumby prospects.

Contessa

At Contessa, 44 aircore holes were completed on a 40 m by 40 m grid to in-fill around intersections of supergene gold mineralisation in drill holes completed in 2013 and 2014. The latest drilling targeted three of the earlier drill traverses and was oriented at 90 degrees (i.e. towards 040 or 220 degrees) to the earlier programs to test for a northwest structural control on the mineralisation.

The re-oriented drill program was designed due to the presence of a graphitic interval, interpreted to be a graphitic shear or fault, with a sub-horizontal trace on the Contessa type section 69700N (see Figures 2 and 3). The dip of this structure is unknown and holes were oriented to test for either northeast or southwest dips.

The drilling has confirmed and extended the supergene mineralisation reported in the first phase of aircore drilling that was completed on a wider 80 m to 100 m traverse spacing (see Lodestar's ASX announcements dated $18^{\text {th }}$ March 2013 and $15^{\text {th }}$ July 2014). It has now been confirmed that gold
mineralisation occurs as a sub-horizontal layer at the base of complete oxidation - between 40 m and 60 m depth - and drill intercepts of $>1 \mathrm{~g} / \mathrm{t}$ gold extend over a strike length of approximately 200 m .

In addition to the supergene intercepts, a number of holes reported significant widths of $>0.1 \mathrm{~g} / \mathrm{t}$ gold into the underlying transition zone at greater depths of between 80 and 100m. These transition zones were intersected towards the west of the anomalous gold zone which remains open in this direction. These deeper zones are significant as they may provide an indicator of the location of the link between the supergene and bedrock mineralisation. This area represents an important target for future RC drilling with the effective depth extents of aircore drilling reached in the recent program.

Information from the new and existing holes will be compiled and reviewed to provide greater insight into the distribution of gold mineralisation, the graphitic interval and possible structural controls. Significant intervals from the current program are listed in Table 1 and shown in Figures 3 to 7. All assay results are reported in the Annexure.

Figure 2 Contessa drill section 69700N, showing trace of graphitic interval and its relationship to mineralisation (graphitic interval is interpreted to dip into or out of the page, i.e. to northeast or southwest).

Table 1: Contessa - Significant results greater than 1g/t (1000ppb) gold.

HoleID	Easting	Northing	RL	Depth(m)	Dip	Azimuth	From	To	Au_ppb	S_ppm
LNR786	788184	7192250	560	87	-60	40	48	52	2210	150
LNR790	788132	7192228	560	75	-60	40	48	52	3040	-50
LNR792	788181	7192310	560	90	-60	220	44	48	1460	-50
LNR792							84	88	1720	150
LNR795	788104	7192256	560	66	-60	220	44	48	2550	-50
LNR795							52	56	1390	-50

HoleID	Easting	Northing	RL	Depth(m)	Dip	Azimuth	From	To	Au_ppb	S_ppm
LNR796	788142	7192300	560	84	-60	220	48	52	3430	-50
LNR796							56	60	1310	-50
LNR796							64	68	2580	-50
LNR797	788159	7192340	560	99	-60	220	68	72	1720	-50
LNR799	788056	7192242	560	94	-60	220	48	52	1830	-50
LNR800	788081	7192274	560	90	-60	220	48	52	1110	-50
LNR800							52	56	1810	-50
LNR800							56	60	1110	-50
LNR801	788118	7192311	560	93	-60	220	48	52	2020	-50
LNR804	788035	7192263	560	102	-60	220	48	52	4320	50
LNR809	788184	7192276	560	81	-60	220	48	52	1370	100
LNR810	788214	7192257	560	73	-60	220	48	52	3370	50
LNR810							52	56	3340	50
LNR814	788530	7192289	560	76	-60	40	44	48	2980	50
LNR816	788523	7192351	560	75	-60	40	8	12	1180	100
LNR820	788457	7192346	560	93	-60	40	40	44	1690	50

Brumby

An additional 13 shallow aircore holes were completed at the Brumby prospect to test auger geochemical anomalies generated in 2014. Two short lines of drilling were completed on traverses approximately 300 m apart with vertical drill holes spaced at 50 m . The area has seen no previous drilling.

The aircore program tested part of the western contact of the intrusive complex where syenite appears to transition into foliated mafic rocks and sheared, chloritic and silicified intermediate rocks. This contact is a prime target for structurally controlled syenite-related mineralisation and the higher grades typically found at the margins of mineralised intrusions. The contact does not outcrop and was successfully targeted using the results of a magnetic survey completed in 2011.

Initial drilling returned significant results from the westernmost hole on the southern traverse, listed in Table 2 and see Figures 8 and 9.

Table 2: Brumby - Significant results greater than $1 \mathrm{~g} / \mathrm{t}$ (1000ppb) gold.

HolelD	Easting	Northing	RL	Depth(m)	Dip	Azimuth	From	To	Au_ppb	S_ppm
LNR824	783295	7190896	580	43	-90	0	20	24	1010	-50
LNR824							40	43	1610	-50
LNR829	783482	7190727	580	22	-90	0	4	8	1310	50

Conclusions

The Company is very excited about the results of this latest drilling campaign, which have upgraded both Contessa and Brumby and provided further evidence that the under-explored Contessa complex has the potential to host a major gold deposit. With multiple drill-ready targets to test, the Company looks forward to the planned follow-up drilling to further confirm this.

The in-fill drilling at Contessa has successfully extended the relatively shallow zone of supergene gold mineralisation between 69600 N and 69700 N , over a distance of approximately 200 m . The persistence of the supergene gold horizon is consistent with dispersion from a rich, underlying primary bedrock source and several holes have reported gold anomalies persisting at depth into the transition zone, potentially narrowing the source area. Data from all past and current drilling will be compiled and used to guide future RC drill targeting.

Reconnaissance drilling at Brumby, targeting geochemical anomalies on the western margin of the syenite intrusion has returned positive results, highlighting a new area of untested potential 300 m west and south of previous drilling. This area requires systematic drilling in addition to in-fill drilling of the lag gold anomaly between the drill traverses completed in 2013-2014 and a first-pass drill test of a recently identified zone of rock and lag anomalies east of the current drilling (see Lodestar's ASX announcement dated 8 August 2016).

The Contessa and Brumby prospects are evidence of the presence of a large, gold mineralising system related to a multi-phase, intrusive complex centred on the Contessa granite. The recent results support Lodestar's regional geological targeting model which indicates the potential to contain both syenitehosted, lower grade, bulk tonnage deposits and higher grade, structurally controlled deposits (see Figures 10 and 11).

Significant supergene gold intercepts previously achieved at Contessa southwest and Gidgee Flat (see Lodestar's ASX announcement dated 30 January 2015), which are located along the 4 km long granite contact between Brumby and Contessa, have not been followed up and are further evidence that the granite margin is a major, largely untested target for future exploration and drilling.

Bill Clayton

Managing Director

Media Enquiries

Michael Vaughan, Fivemark Partners
michael.vaughan@fivemark.com.au m: +61

Competent Person Statement

The information in this report that relates to Exploration Results is based on information compiled by Bill Clayton, Managing Director, who is a Member of the Australasian Institute of Geoscientists and has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Clayton consents to the inclusion in this report of the matters based on the information in the form and context in which it appears.

The information in this announcement that relates to previously released exploration results was disclosed under JORC 2012 in the ASX announcements dated $18^{\text {th }}$ March 2013 "Significant Gold Results from Contessa", 15th July 2014 "Contessa Gold Results and Neds Creek Copper Targets", $30^{\text {th }}$ January 2015 "December 2014 Quarterly Activities Report" and $8^{\text {th }}$ August 2016 "Gold Target Extended at Brumby". These announcements are available to view on the Lodestar website. The company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement. The company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

Figure 3 Contessa drill plan showing assay results and significant intersections (blue text) with transition zone intersections in red (MGA94, with local grid north at 40 degrees magnetic).

Figure 4 Contessa drill collar plan - 70000N showing assay results.

Figure 5 Contessa drill cross-section 29800E looking northwest (310 degrees) (gold assays greater than 10 ppb Au).

Figure 6 Contessa drill cross-section 29840E, looking northwest (showing gold assays greater than 10ppb Au).

Figure 7 Contessa drill cross-section 29940E, looking northwest (gold assays greater than 10ppb Au).

Figure 8 Brumby - drill collar plan, showing significant assay results (blue text), pre-existing drill collars and interpreted major structures on aeromagnetic (TMI) image (MGA94).

Figure 9 Brumby southern drill cross-section (assays greater than 10ppb Au).

Figure 10 Regional exploration targets in the Contessa-Brumby area. Large areas of the southern Contessa granite (with potential to host intrusion-related contact mineralisation) remain open and untested by drilling.

Figure 11 Intrusion related, syenite-hosted exploration model.

JORC Code, 2012 Edition

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	- Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. - Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. - Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	- Aircore drill holes were sampled at 1 m intervals from a cyclone on the rig and collected in sequence in plastic bags. From 0 metres to end of hole, 1 m samples were composited to 4 metre samples and a 2.5 kg sample is submitted for assay. Samples above 70 m depth were largely dry and all recoveries are monitored. Samples are logged and ground conditions that impact sample recoveries are recorded in the sample and geology ledger. - Sample representivity is maintained by placing the composite samples in a pre-numbered calico bag with a corresponding sample book entry. Certified reference materials, field duplicates and laboratory repeat samples are analysed routinely. - Sample results reported in Tables 1 and 2 and the Annexure used the sampling protocol described below; Samples from 0 metres to end of hole were collected as 4 metre composites by spearing consistently down the side of bagged 1 metre samples using a PVC spear. This method is applied as a first-pass screening for anomalous gold results. Approximately 2.5 kg of material was dried, crushed pulverised and split to produce a 40 g charge for aqua regia digest and ICPMS (DL 1 ppb Au).
Drilling techniques	- Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc).	- Aircore method using a $3.34^{\prime \prime}$ blade bit, hammer bit used for end of hole samples at Brumby. Noncore method, no downhole surveys were recorded.
Drill sample recovery	- Method of recording and assessing core and chip sample recoveries and results assessed. - Measures taken to maximise sample recovery and ensure representative nature of the samples. - Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	- Sample recoveries and wet samples were monitored and included in Lodestar's drill hole database. - Samples collected at 1 metre intervals were collected in plastic bags and placed in rows sequentially. Drill sampling equipment was cleaned regularly to minimise contamination. - Lodestar monitors the distribution of high grade gold and sample recoveries, anomalous samples do not appear to be significantly affected by sample smearing although wet samples are present at drilling depths greater than 70 m at Contessa.

Criteria	JORC Code explanation	Con
Logging	- Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. - Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. - The total length and percentage of the relevant intersections logged.	- Chip samples were routinely geologically logged. The drilling and sampling methods used were first-pass exploration methods and not intended to support Mineral Resource estimation. - Logging is qualitative in nature. - All aircore samples were geologically logged.
Sub-sampling techniques and sample preparation	- If core, whether cut or sawn and whether quarter, half or all core taken. - If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. - For all sample types, the nature, quality and appropriateness of the sample preparation technique. - Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. - Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. - Whether sample sizes are appropriate to the grain size of the material being sampled.	- Aircore samples were recovered from the drill hole via a cyclone at 1 metre intervals. Each 1 metre sample was placed in a plastic bag on the ground in sequence. A hollow PVC spear is used to obtain a sub-sample through each 1 metre interval; these are combined for submission as a 2.5 kg 4 metre composite sample. Wet samples are recorded if present, in this program samples generally remained dry until the last 10 m in some deeper holes at Contessa. - All samples for assay are stored in pre-numbered bags and submitted to Bureau Veritas (UltraTrace) Laboratories for sample preparation and analysis. - Sample preparation for drill samples involved drying the whole sample, crushing to 3 mm and pulverising to 90% passing -75 microns. The pulverised sample was split with a rotary sample divider to obtain a 40 gram charge. Duplicate field samples and laboratory repeats show satisfactory reproducibility. - Sample size is appropriate for early exploration drilling where mineral grainsize is unknown.
Quality of assay data and laboratory tests	- The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. - For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. - Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	- A nominal 40 gram charge is digested with aqua regia and gold is determined by ICP-MS, the detection limit is 1 ppb . This is a partial digest for base metal and refractory elements, although it is extremely efficient for the extraction of gold. S was analysed from the aqua regia solution by ICP-AES/MS. - No geophysical tools were used to determine any element concentrations. - Laboratory QAQC includes the use of laboratory standards and replicates; Lodestar's certified reference standards were inserted at a ratio of 1:50 (2\%) with each batch of samples. These quality control results are reported with the sample results in the final laboratory reports. Lodestar's certified reference standards ranging from blanks to ppm gold were inserted throughout the drilling program, accuracy is within acceptable limits.

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	- The verification of significant intersections by either independent or alternative company personnel. - The use of twinned holes. - Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. - Discuss any adjustment to assay data.	- Significant intersections have not been independently validated at this time. - No twinned holes have been completed. - Field and laboratory data were collected electronically and entered into a relational database. Data collection protocols are recorded in Lodestar's operation manual. - There has been no adjustment to assay data.
Location of data points	- Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. - Specification of the grid system used. - Quality and adequacy of topographic control.	- Drill hole locations are fixed by handheld GPS, accuracy is estimated to be $+/-5$ metres. - Drill hole coordinates were recorded in MGA94 Zone 50 grid. - The topography within prospect areas is generally flat; RL's are averaged from GPS readings of individual drill holes in each area and are subject to significant error.
Data spacing and distribution	- Data spacing for reporting of Exploration Results. - Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. - Whether sample compositing has been applied.	- Drill holes are generally spaced at 40 metres on section and 40 metres between sections. The data is insufficient to establish continuity for Mineral Resource estimation. - 1 metre aircore samples have been composited to 4 metre samples for assay.
Orientation of data in relation to geological structure	- Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. - If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	- The aircore drilling method does not provide structural information and the orientation of the underlying geology has not been established. At Contessa drilling was oriented perpendicular to the interpreted strike of a NW shear plane as determined from interpretation of aeromagnetic data and geological sections, the drill orientation is 90deg to previous drill programs.
Sample security	- The measures taken to ensure sample security.	- Samples were stored at Lodestar's exploration camp in sealed bags under supervision prior to dispatch by registered courier or Lodestar staff to Bureau Veritas - UltraTrace Laboratories.
Audits or reviews	- The results of any audits or reviews of sampling techniques and data.	- No audits or reviews have been carried out.

Criteria	Commentary
Mineral tenement and land tenure status	- Contessa is located on E52/2456, within Lodestar's Ned's Creek project. The tenement is owned by Audacious Resources, a wholly-owned subsidiary of Lodestar Minerals and expires on $16 / 09 / 2020$. The tenement is within the native title claim WC99/46 of the Yugunga-Nya Group. Lodestar has signed a Heritage Agreement with the traditional owners to carry out mineral exploration on the tenement.
Exploration done by other parties	- Exploration commenced at McDonald Well in the late 1960's, WMC explored for Zambian Copper Belt style mineralisation and completed regional geological mapping and sampling, followed by minor percussion drilling. CRA Exploration completed regional mapping and auger sampling, also at McDonald Well. No significant anomalies were identified on the tenements. Minor exploration drilling by Barrick and CRA Exploration east and south of Contessa intersected ultramafic lithologies, confirming the extent of the greenstone sequence in this area. There has been no material exploration by other parties over the Contessa area.
Geology	- The geology of the project area comprises the northern margin of the Proterozoic Yerrida Basin. The geology forms two discrete units; o Proterozoic sediments of the Yerrida Basin that are prospective for sediment-hosted copper and base metal mineralisation in black shale and carbonate sequences, with evidence of secondary and primary copper mineralisation in the Thaduna district. Archaean basement rocks on the northern margin of the Yerrida Basin. The basement-sediment contact trends east-west and Lodestar's exploration has identified extensive gold anomalism adjacent to this contact. The basement consists of granite and fringing mafic to intermediate and ultramafic rocks that are not widely exposed at surface. The maficultramafic rocks and the adjacent granite that host the gold mineralisation and are thought to be Archaean in age but may be part of the Glenburgh orogenic event along the norther Yilgarn margin. Identification of syenite-hosted, intrusion-related gold mineralisation at Brumby indicates that this region differs in comparison with other lode gold occurrences in the Plutonic Well greenstone belt and the surrounding Proterozoic fold belt.
Drill hole information	- Tabulated data is provided in Tables 2 and 3 and the Annexure, attached.
Data aggregation methods	- Assay data are reported as 4 metre composite samples and reported aggregated intercepts are length weighted average. No cutting of high grades (maximum reported grade $4.3 \mathrm{~g} / \mathrm{t}$ gold) or use of minimum cut-off grade when calculating aggregated intervals.
Relationship between mineralisation widths and intercept lengths	- Drilling at Contessa is oriented -60 degrees towards 40 degrees or 220 degrees, perpendicular to the interpreted strike of NW trending shear planes. At Brumby, vertical holes were drilled. True thickness of supergene intersections at Contessa is estimated to be approximately 85% of the drill intercept length, elsewhere there is insufficient information to estimate mineralisation widths.
Diagrams	- See Figures 2 to 9.
Balanced reporting	- All drill holes and intercepts are reported in Tables 2 and 3 and the Annexure, attached.
Other substantive exploration data	- None to report.
Further Work	Extensive zones of anomalous gold greater than $100 \mathrm{ppb}(0.1 \mathrm{~g} / \mathrm{t})$ have been identified in drilling at Contessa. The anomalies remain open at depth and along strike along the granite contact. In-fill drilling at Contessa has extended a zone of supergene gold mineralisation several areas where low grade mineralisation persists into the transition zone below supergene mineralisation. Data from all drilling will be compiled with the aim of establishing bedrock targets for testing with RC drilling. A new zone of mineralisation has been identified at Brumby, where aircore holes targeted the western contact of a syenite intrusion. This drilling has successfully demonstrated "proof of concept" for the syenite intrusion-related gold model that identifies the structurally-modified contact zones of the intrusion as a potentially

ANNEXURE - Assay Results

Holeld	Easting	Northing	RL	Depth(m)	Dip	Azimuth	From	To	Au_ppb
LNR780	788226	7192254	560	63	-60	40	0	4	9
LNR780							4	8	8
LNR780							8	12	6
LNR780							12	16	2
LNR780							16	20	5
LNR780							20	24	1
LNR780							24	28	9
LNR780							28	32	114
LNR780							32	36	87
LNR780							36	40	83
LNR780							40	44	2
LNR780							44	48	1
LNR780							48	52	54
LNR780							52	56	35
LNR780							56	60	8
LNR780							60	63	4
LNR781	788205	7192224	560	86	-60	40	0	4	6
LNR781							4	8	4
LNR781							8	12	7
LNR781							12	16	-1
LNR781							16	20	1
LNR781							20	24	1
LNR781							24	28	20
LNR781							28	32	4
LNR781							32	36	27
LNR781							36	40	4
LNR781							40	44	44
LNR781							44	48	51
LNR781							48	52	34
LNR781							52	56	113
LNR781							56	60	140
LNR781							60	64	218
LNR781							64	68	15
LNR781							68	72	22
LNR781							72	76	25
LNR781							76	80	31
LNR781							80	84	18
LNR781							84	86	16
LNR782	788178	7192195	560	54	-60	40	0	4	5
LNR782							4	8	4
LNR782							8	12	3
LNR782							12	16	-1
LNR782							16	20	-1

HolelD	Easting	Northing	RL	Depth(m)	Dip	Azimuth	From	To	Au_ppb
LNR782							20	24	43
LNR782							24	28	2
LNR782							28	32	-1
LNR782							32	36	2
LNR782							36	40	20
LNR782							40	44	28
LNR782							44	48	9
LNR782							48	52	3
LNR782							52	54	3
LNR783	788156	7192162	560	51	-60	40	0	4	4
LNR783							4	8	3
LNR783							8	12	2
LNR783							12	16	1
LNR783							16	20	1
LNR783							20	24	6
LNR783							24	28	-1
LNR783							28	32	1
LNR783							32	36	4
LNR783							36	40	9
LNR783							40	44	9
LNR783							44	48	2
LNR783							48	51	5
LNR784	788130	7192174	560	61	-60	40	0	4	6
LNR784							4	8	27
LNR784							8	12	10
LNR784							12	16	50
LNR784							16	20	27
LNR784							20	24	4
LNR784							24	28	3
LNR784							28	32	5
LNR784							32	36	5
LNR784							36	40	9
LNR784							40	44	164
LNR784							44	48	400
LNR784							48	52	27
LNR784							52	56	29
LNR784							56	60	11
LNR784							60	61	4
LNR785	788159	7192210	560	68	-60	40	0	4	6
LNR785							4	8	6
LNR785							8	12	13
LNR785							12	16	13
LNR785							16	20	13
LNR785							20	24	8
LNR785							24	28	1

Holeld	Easting	Northing	RL	Depth(m)	Dip	Azimuth	From	To	Au_ppb
LNR785							28	32	1
LNR785							32	36	-1
LNR785							36	40	865
LNR785							40	44	586
LNR785							44	48	155
LNR785							48	52	360
LNR785							52	56	962
LNR785							56	60	502
LNR785							60	64	262
LNR786	788184	7192250	560	87	-60	40	0	4	8
LNR786							4	8	7
LNR786							8	12	66
LNR786							12	16	2
LNR786							16	20	19
LNR786							20	24	1
LNR786							24	28	3
LNR786							28	32	1
LNR786							32	36	1
LNR786							36	40	1
LNR786							40	44	31
LNR786							44	48	404
LNR786							48	52	2210
LNR786							52	56	288
LNR786							56	60	68
LNR786							60	64	8
LNR786							64	68	35
LNR786							68	72	3
LNR786							72	76	7
LNR786							76	80	33
LNR786							80	84	71
LNR786							84	87	8
LNR787	788210	7192274	560	61	-60	40	0	4	22
LNR787							4	8	5
LNR787							8	12	4
LNR787							12	16	5
LNR787							16	20	16
LNR787							20	24	3
LNR787							24	28	127
LNR787							28	32	13
LNR787							32	36	4
LNR787							36	40	5
LNR787							40	44	33
LNR787							44	48	28
LNR787							48	50	1
LNR788	788186	7192292	560	82	-60	40	0	2	15

Holeld	Easting	Northing	RL	Depth(m)	Dip	Azimuth	From	To	Au_ppb
LNR788							2	4	14
LNR788							4	8	25
LNR788							8	12	2
LNR788							12	16	-1
LNR788							16	20	-1
LNR788							20	24	-1
LNR788							24	28	2
LNR788							28	32	2
LNR788							32	36	604
LNR788							36	40	3
LNR788							40	44	66
LNR788							44	48	92
LNR788							48	52	8
LNR788							52	56	77
LNR788							56	60	183
LNR788							60	64	35
LNR788							64	68	8
LNR788							68	72	5
LNR788							72	76	4
LNR788							76	80	4
LNR788							80	82	4
LNR789	788165	7192262	560	99	-60	40	0	4	87
LNR789							4	8	11
LNR789							8	12	6
LNR789							12	16	1
LNR789							16	20	5
LNR789							20	24	1
LNR789							24	28	2
LNR789							28	32	4
LNR789							32	36	-1
LNR789							36	40	39
LNR789							40	44	24
LNR789							44	48	30
LNR789							48	52	9
LNR789							52	56	32
LNR789							56	60	7
LNR789							60	64	7
LNR789							64	68	35
LNR789							68	72	21
LNR789							72	76	50
LNR789							76	80	86
LNR789							80	84	296
LNR789							84	88	50
LNR789							88	92	187
LNR789							92	96	14

Holeld	Easting	Northing	RL	Depth(m)	Dip	Azimuth	From	To	Au_ppb
LNR789							96	99	15
LNR790	788132	7192228	560	75	-60	40	0	4	9
LNR790							4	8	23
LNR790							8	12	25
LNR790							12	16	20
LNR790							16	20	11
LNR790							20	24	2
LNR790							24	28	2
LNR790							28	32	1
LNR790							32	36	1
LNR790							36	40	3
LNR790							40	44	4
LNR790							44	48	62
LNR790							48	52	3040
LNR790							52	56	248
LNR790							56	60	192
LNR790							60	64	54
LNR790							64	68	27
LNR790							68	72	5
LNR790							72	75	2
LNR791	788106	7192201	560	68	-60	40	0	4	8
LNR791							4	8	20
LNR791							8	12	6
LNR791							12	16	19
LNR791							16	20	4
LNR791							20	24	1
LNR791							24	28	1
LNR791							28	32	5
LNR791							32	36	27
LNR791							36	40	4
LNR791							40	44	63
LNR791							44	48	66
LNR791							48	52	20
LNR791							52	56	16
LNR791							56	60	17
LNR791							60	64	9
LNR791							64	68	6
LNR792	788181	7192310	560	90	-60	220	0	4	19
LNR792							4	8	7
LNR792							8	12	4
LNR792							12	16	4
LNR792							16	20	1
LNR792							20	24	1
LNR792							24	28	1
LNR792							28	32	1

Holeld	Easting	Northing	RL	Depth(m)	Dip	Azimuth	From	To	Au_ppb
LNR792							32	36	1
LNR792							36	40	1
LNR792							40	44	1
LNR792							44	48	1460
LNR792							48	52	212
LNR792							52	56	12
LNR792							56	60	24
LNR792							60	64	172
LNR792							64	68	18
LNR792							68	72	561
LNR792							72	76	29
LNR792							76	80	46
LNR792							80	84	371
LNR792							84	88	1720
LNR792							88	90	650
LNR793	788208	7192353	560	85	-60	220	0	4	54
LNR793							4	8	15
LNR793							8	12	7
LNR793							12	16	7
LNR793							16	20	9
LNR793							20	24	1
LNR793							24	28	2
LNR793							28	32	2
LNR793							32	36	1
LNR793							36	40	1
LNR793							40	44	19
LNR793							44	48	13
LNR793							48	52	195
LNR793							52	56	8
LNR793							56	60	27
LNR793							60	64	110
LNR793							64	68	62
LNR793							68	72	10
LNR793							72	76	39
LNR793							76	80	12
LNR793							80	84	15
LNR793							84	85	13
LNR794	788080	7192228	560	71	-60	220	0	4	17
LNR794							4	8	7
LNR794							8	12	2
LNR794							12	16	3
LNR794							16	20	1
LNR794							20	24	101
LNR794							24	28	5
LNR794							28	32	1

Holeld	Easting	Northing	RL	Depth(m)	Dip	Azimuth	From	To	Au_ppb
LNR794							32	36	6
LNR794							36	40	7
LNR794							40	44	3
LNR794							44	48	287
LNR794							48	52	130
LNR794							52	56	124
LNR794							56	60	20
LNR794							60	64	10
LNR794							64	68	46
LNR794							68	71	11
LNR795	788104	7192256	560	66	-60	220	0	4	20
LNR795							4	8	20
LNR795							8	12	6
LNR795							12	16	49
LNR795							16	20	115
LNR795							20	24	12
LNR795							24	28	2
LNR795							28	32	4
LNR795							32	36	3
LNR795							36	40	9
LNR795							40	44	5
LNR795							44	48	2550
LNR795							48	52	891
LNR795							52	56	1390
LNR795							56	60	438
LNR795							60	64	28
LNR795							64	66	60
LNR796	788142	7192300	560	84	-60	220	0	4	32
LNR796							4	8	14
LNR796							8	12	14
LNR796							12	16	6
LNR796							16	20	2
LNR796							20	24	2
LNR796							24	28	19
LNR796							28	32	2
LNR796							32	36	11
LNR796							36	40	1
LNR796							40	44	6
LNR796							44	48	3
LNR796							48	52	3430
LNR796							52	56	319
LNR796							56	60	1310
LNR796							60	64	445
LNR796							64	68	2580
LNR796							68	72	638

Holeld	Easting	Northing	RL	Depth(m)	Dip	Azimuth	From	To	Au_ppb
LNR796							72	76	81
LNR796							76	80	13
LNR796							80	84	103
LNR797	788159	7192340	560	99	-60	220	0	4	103
LNR797							4	8	9
LNR797							8	12	11
LNR797							12	16	6
LNR797							16	20	2
LNR797							20	24	1
LNR797							24	28	1
LNR797							28	32	2
LNR797							32	36	2
LNR797							36	40	1
LNR797							40	44	45
LNR797							44	48	14
LNR797							48	52	1
LNR797							52	56	7
LNR797							56	60	40
LNR797							60	64	23
LNR797							64	68	14
LNR797							68	72	1720
LNR797							72	76	236
LNR797							76	80	26
LNR797							80	84	12
LNR797							84	88	410
LNR797							88	92	4
LNR797							92	96	19
LNR797							96	99	394
LNR798	788186	7192371	560	100	-60	220	0	4	56
LNR798							4	8	56
LNR798							8	12	42
LNR798							12	16	7
LNR798							16	20	6
LNR798							20	24	3
LNR798							24	28	3
LNR798							28	32	3
LNR798							32	36	2
LNR798							36	40	5
LNR798							40	44	4
LNR798							44	48	7
LNR798							48	52	11
LNR798							52	56	7
LNR798							56	60	20
LNR798							60	64	6
LNR798							64	68	2

HolelD	Easting	Northing	RL	Depth(m)	Dip	Azimuth	From	To	Au_ppb
LNR798							68	72	7
LNR798							72	76	76
LNR798							76	80	32
LNR798							80	84	152
LNR798							84	88	34
LNR798							88	92	123
LNR798							92	96	84
LNR798							96	100	233
LNR799	788056	7192242	560	94	-60	220	0	4	27
LNR799							4	8	11
LNR799							8	12	13
LNR799							12	16	3
LNR799							16	20	2
LNR799							20	24	3
LNR799							24	28	2
LNR799							28	32	6
LNR799							32	36	7
LNR799							36	40	1
LNR799							40	44	34
LNR799							44	48	133
LNR799							48	52	1830
LNR799							52	56	27
LNR799							56	60	7
LNR799							60	64	14
LNR799							64	68	8
LNR799							68	72	18
LNR799							72	76	10
LNR799							76	80	145
LNR799							80	84	60
LNR799							84	88	55
LNR799							88	92	160
LNR799							92	94	161
LNR800	788081	7192274	560	90	-60	220	0	4	16
LNR800							4	8	20
LNR800							8	12	16
LNR800							12	16	10
LNR800							16	20	4
LNR800							20	24	1
LNR800							24	28	-1
LNR800							28	32	12
LNR800							32	36	79
LNR800							36	40	3
LNR800							40	44	2
LNR800							44	48	123
LNR800							48	52	1110

Holeld	Easting	Northing	RL	Depth(m)	Dip	Azimuth	From	To	Au_ppb
LNR800							52	56	1810
LNR800							56	60	1110
LNR800							60	64	388
LNR800							64	68	234
LNR800							68	72	103
LNR800							72	76	176
LNR800							76	80	153
LNR800							80	84	132
LNR800							84	88	123
LNR800							88	90	140
LNR801	788118	7192311	560	93	-60	220	0	4	100
LNR801							4	8	160
LNR801							8	12	32
LNR801							12	16	18
LNR801							16	20	5
LNR801							20	24	4
LNR801							24	28	6
LNR801							28	32	13
LNR801							32	36	3
LNR801							36	40	17
LNR801							40	44	3
LNR801							44	48	49
LNR801							48	52	2020
LNR801							52	56	120
LNR801							56	60	201
LNR801							60	64	29
LNR801							64	68	9
LNR801							68	72	183
LNR801							72	76	900
LNR801							76	80	415
LNR801							80	84	273
LNR801							84	88	33
LNR801							88	92	22
LNR801							92	93	24
LNR802	788141	7192362	560	102	-60	220	0	4	7
LNR802							4	8	4
LNR802							8	12	7
LNR802							12	16	2
LNR802							16	20	5
LNR802							20	24	3
LNR802							24	28	6
LNR802							28	32	7
LNR802							32	36	-1
LNR802							36	40	-1
LNR802							40	44	-1

Holeld	Easting	Northing	RL	Depth(m)	Dip	Azimuth	From	To	Au_ppb
LNR802							44	48	-1
LNR802							48	52	-1
LNR802							52	56	-1
LNR802							56	60	14
LNR802							60	64	2
LNR802							64	68	3
LNR802							68	72	-1
LNR802							72	76	4
LNR802							76	80	-1
LNR802							80	84	17
LNR802							84	88	126
LNR802							88	92	34
LNR802							92	96	1
LNR802							96	100	147
LNR802							100	102	39
LNR803	788160	7192383	560	102	-60	220	0	4	15
LNR803							4	8	13
LNR803							8	12	1
LNR803							12	16	13
LNR803							16	20	-1
LNR803							20	24	-1
LNR803							24	28	2
LNR803							28	32	-1
LNR803							32	36	-1
LNR803							36	40	7
LNR803							40	44	6
LNR803							44	48	2
LNR803							48	52	5
LNR803							52	56	2
LNR803							56	60	5
LNR803							60	64	29
LNR803							64	68	50
LNR803							68	72	12
LNR803							72	76	7
LNR803							76	80	3
LNR803							80	84	3
LNR803							84	88	2
LNR803							88	92	21
LNR803							92	96	2
LNR803							96	100	3
LNR803							100	102	5
LNR804	788035	7192263	560	102	-60	220	0	4	13
LNR804							4	8	13
LNR804							8	12	32
LNR804							12	16	4

Holeld	Easting	Northing	RL	Depth(m)	Dip	Azimuth	From	To	Au_ppb
LNR804							16	20	16
LNR804							20	24	3
LNR804							24	28	185
LNR804							28	32	5
LNR804							32	36	3
LNR804							36	40	91
LNR804							40	44	32
LNR804							44	48	254
LNR804							48	52	4320
LNR804							52	56	219
LNR804							56	60	134
LNR804							60	64	62
LNR804							64	68	208
LNR804							68	72	68
LNR804							72	76	190
LNR804							76	80	328
LNR804							80	84	417
LNR804							84	88	500
LNR804							88	92	168
LNR804							92	96	211
LNR804							96	100	195
LNR804							100	102	92
LNR805	788066	7192292	560	93	-60	220	0	4	24
LNR805							4	8	6
LNR805							8	12	8
LNR805							12	16	6
LNR805							16	20	5
LNR805							20	24	5
LNR805							24	28	7
LNR805							28	32	7
LNR805							32	36	4
LNR805							36	40	4
LNR805							40	44	11
LNR805							44	48	18
LNR805							48	52	22
LNR805							52	56	258
LNR805							56	60	161
LNR805							60	64	530
LNR805							64	68	254
LNR805							68	72	83
LNR805							72	76	146
LNR805							76	80	40
LNR805							80	84	622
LNR805							84	88	293
LNR805							88	93	309

HolelD	Easting	Northing	RL	Depth(m)	Dip	Azimuth	From	To	Au_ppb
LNR806	788096	7192344	560	101	-60	220	0	4	13
LNR806							4	8	13
LNR806							8	12	5
LNR806							12	16	10
LNR806							16	20	5
LNR806							20	24	9
LNR806							24	28	11
LNR806							28	32	2
LNR806							32	36	3
LNR806							36	40	-1
LNR806							40	44	2
LNR806							44	48	2
LNR806							48	52	4
LNR806							52	56	21
LNR806							56	60	36
LNR806							60	64	5
LNR806							64	68	18
LNR806							68	72	54
LNR806							72	76	97
LNR806							76	80	165
LNR806							80	84	120
LNR806							84	88	28
LNR806							88	92	6
LNR806							92	96	56
LNR806							96	99	1000
LNR807	787988	7192293	560	98	-60	220	0	4	162
LNR807							4	8	18
LNR807							8	12	24
LNR807							12	16	5
LNR807							16	20	4
LNR807							20	24	2
LNR807							24	28	1
LNR807							28	32	3
LNR807							32	36	54
LNR807							36	40	3
LNR807							40	44	4
LNR807							44	48	2
LNR807							48	52	3
LNR807							52	56	189
LNR807							56	60	7
LNR807							60	64	28
LNR807							64	68	121
LNR807							68	72	50
LNR807							72	76	384
LNR807							76	80	162

Holeld	Easting	Northing	RL	Depth(m)	Dip	Azimuth	From	To	Au_ppb
LNR807							80	84	34
LNR807							84	88	75
LNR807							88	92	11
LNR807							92	96	143
LNR807							96	98	55
LNR808	788012	7192332	560	101	-60	220	0	4	17
LNR808							4	8	15
LNR808							8	12	15
LNR808							12	16	10
LNR808							16	20	15
LNR808							20	24	15
LNR808							24	28	1
LNR808							28	32	5
LNR808							32	36	2
LNR808							36	40	1
LNR808							40	44	4
LNR808							44	48	-1
LNR808							48	52	2
LNR808							52	56	4
LNR808							56	60	-1
LNR808							60	64	-1
LNR808							64	68	13
LNR808							68	72	3
LNR808							72	76	5
LNR808							76	80	13
LNR808							80	84	71
LNR808							84	88	5
LNR808							88	92	20
LNR808							92	96	117
LNR808							96	100	26
LNR808							100	101	14
LNR809	788184	7192276	560	81	-60	220	0	4	17
LNR809							4	8	10
LNR809							8	12	6
LNR809							12	16	64
LNR809							16	20	12
LNR809							20	24	1
LNR809							24	28	-1
LNR809							28	32	4
LNR809							32	36	4
LNR809							36	40	4
LNR809							40	44	428
LNR809							44	48	97
LNR809							48	52	1370
LNR809							52	56	359

Holeld	Easting	Northing	RL	Depth(m)	Dip	Azimuth	From	To	Au_ppb
LNR809							56	60	515
LNR809							60	64	125
LNR809							64	68	31
LNR809							68	72	21
LNR809							72	76	37
LNR809							76	80	33
LNR809							80	81	16
LNR810	788214	7192257	560	73	-60	220	0	4	7
LNR810							4	8	-9999
LNR810							8	12	3
LNR810							12	16	1
LNR810							16	20	2
LNR810							20	24	1
LNR810							24	28	27
LNR810							28	32	63
LNR810							32	36	1
LNR810							36	40	24
LNR810							40	44	382
LNR810							44	48	47
LNR810							48	52	3370
LNR810							52	56	3340
LNR810							56	60	31
LNR810							60	64	9
LNR810							64	68	105
LNR810							68	72	11
LNR810							72	73	8
LNR811	788240	7192228	560	65	-60	220	0	4	18
LNR811							4	8	9
LNR811							8	12	7
LNR811							12	16	20
LNR811							16	20	17
LNR811							20	24	3
LNR811							24	28	88
LNR811							28	32	15
LNR811							32	36	15
LNR811							36	40	19
LNR811							40	44	18
LNR811							44	48	43
LNR811							48	52	63
LNR811							52	56	26
LNR811							56	60	15
LNR811							60	64	5
LNR811							64	65	8
LNR812	788580	7192362	560	64	-60	40	0	4	9
LNR812							4	8	324

Holeld	Easting	Northing	RL	Depth(m)	Dip	Azimuth	From	To	Au_ppb
LNR812							8	12	32
LNR812							12	16	16
LNR812							16	20	19
LNR812							20	24	7
LNR812							24	28	8
LNR812							28	32	1
LNR812							32	36	1
LNR812							36	40	-1
LNR812							40	44	1
LNR812							44	48	1
LNR812							48	52	1
LNR812							52	56	12
LNR812							56	60	41
LNR812							60	64	6
LNR813	788563	7192331	560	67	-60	40	0	4	56
LNR813							4	8	266
LNR813							8	12	63
LNR813							12	16	22
LNR813							16	20	7
LNR813							20	24	22
LNR813							24	28	3
LNR813							28	32	2
LNR813							32	36	13
LNR813							36	40	2
LNR813							40	44	5
LNR813							44	48	-1
LNR813							48	52	2
LNR813							52	56	2
LNR813							56	60	2
LNR813							60	64	11
LNR813							64	67	17
LNR814	788530	7192289	560	76	-60	40	0	4	17
LNR814							4	8	507
LNR814							8	12	32
LNR814							12	16	33
LNR814							16	20	17
LNR814							20	24	3
LNR814							24	28	13
LNR814							28	32	68
LNR814							32	36	36
LNR814							36	40	3
LNR814							40	44	2
LNR814							44	48	2980
LNR814							48	52	302
LNR814							52	56	22

HolelD	Easting	Northing	RL	Depth(m)	Dip	Azimuth	From	To	Au_ppb
LNR814							56	60	19
LNR814							60	64	18
LNR814							64	68	37
LNR814							68	72	7
LNR814							72	76	4
LNR815	788549	7192384	560	65	-60	40	0	4	15
LNR815							4	8	208
LNR815							8	12	36
LNR815							12	16	49
LNR815							16	20	6
LNR815							20	24	2
LNR815							24	28	1
LNR815							28	32	2
LNR815							32	36	-1
LNR815							36	40	1
LNR815							40	44	-1
LNR815							44	48	-1
LNR815							48	52	7
LNR815							52	56	1
LNR815							56	60	11
LNR815							60	64	8
LNR815							64	65	7
LNR816	788523	7192351	560	75	-60	40	0	4	44
LNR816							4	8	83
LNR816							8	12	1180
LNR816							12	16	196
LNR816							16	20	6
LNR816							20	24	23
LNR816							24	28	6
LNR816							28	32	1
LNR816							32	36	1
LNR816							36	40	2
LNR816							40	44	2
LNR816							44	48	2
LNR816							48	52	-1
LNR816							52	56	6
LNR816							56	60	3
LNR816							60	64	86
LNR816							64	68	8
LNR816							68	72	9
LNR816							72	75	9
LNR817	788500	7192321	560	88	-60	40	0	4	37
LNR817							4	8	283
LNR817							8	12	73
LNR817							12	16	227

Holeld	Easting	Northing	RL	Depth(m)	Dip	Azimuth	From	To	Au_ppb
LNR817							16	20	43
LNR817							20	24	20
LNR817							24	28	19
LNR817							28	32	5
LNR817							32	36	33
LNR817							36	40	9
LNR817							40	44	3
LNR817							44	48	3
LNR817							48	52	12
LNR817							52	56	163
LNR817							56	60	90
LNR817							60	64	725
LNR817							64	68	505
LNR817							68	72	702
LNR817							72	76	125
LNR817							76	80	102
LNR817							80	84	109
LNR817							84	88	81
LNR818	788511	7192417	560	59	-60	40	0	4	11
LNR818							4	8	9
LNR818							8	12	24
LNR818							12	16	10
LNR818							16	20	2
LNR818							20	24	3
LNR818							24	28	3
LNR818							28	32	3
LNR818							32	36	3
LNR818							36	40	2
LNR818							40	44	7
LNR818							44	48	4
LNR818							48	52	12
LNR818							52	56	14
LNR818							56	59	7
LNR819	788488	7192384	560	67	-60	40	0	4	22
LNR819							4	8	244
LNR819							8	12	88
LNR819							12	16	46
LNR819							16	20	24
LNR819							20	24	5
LNR819							24	28	4
LNR819							28	32	2
LNR819							32	36	6
LNR819							36	40	-1
LNR819							40	44	2
LNR819							44	48	13

HolelD	Easting	Northing	RL	Depth(m)	Dip	Azimuth	From	To	Au_ppb
LNR819							48	52	4
LNR819							52	56	5
LNR819							56	60	230
LNR819							60	64	37
LNR819							64	67	6
LNR820	788457	7192346	560	93	-60	40	0	4	46
LNR820							4	8	226
LNR820							8	12	45
LNR820							12	16	43
LNR820							16	20	162
LNR820							20	24	24
LNR820							24	28	9
LNR820							28	32	3
LNR820							32	36	4
LNR820							36	40	248
LNR820							40	44	1690
LNR820							44	48	330
LNR820							48	52	324
LNR820							52	56	7
LNR820							56	60	9
LNR820							60	64	30
LNR820							64	68	4
LNR820							68	72	95
LNR820							72	76	251
LNR820							76	80	105
LNR820							80	84	82
LNR820							84	88	30
LNR820							88	92	113
LNR820							92	93	115
LNR821	788477	7192439	560	57	-60	40	0	4	4
LNR821							4	8	10
LNR821							8	12	32
LNR821							12	16	8
LNR821							16	20	2
LNR821							20	24	-1
LNR821							24	28	-1
LNR821							28	32	1
LNR821							32	36	1
LNR821							36	40	-1
LNR821							40	44	-1
LNR821							44	48	-1
LNR821							48	52	13
LNR821							52	56	12
LNR821							56	57	9
LNR822	788451	7192410	560	59	-60	40	0	4	4

Holeld	Easting	Northing	RL	Depth(m)	Dip	Azimuth	From	To	Au_ppb
LNR822							4	8	12
LNR822							8	12	59
LNR822							12	16	135
LNR822							16	20	10
LNR822							20	24	-1
LNR822							24	28	-1
LNR822							28	32	-1
LNR822							32	36	-1
LNR822							36	40	-1
LNR822							40	44	-1
LNR822							44	48	-1
LNR822							48	52	-1
LNR822							52	56	26
LNR822							56	59	46
LNR823	788423	7192381	560	63	-60	40	0	4	193
LNR823							4	8	57
LNR823							8	12	48
LNR823							12	16	26
LNR823							16	20	4
LNR823							20	24	83
LNR823							24	28	24
LNR823							28	32	58
LNR823							32	36	61
LNR823							36	40	9
LNR823							40	44	4
LNR823							44	48	2
LNR823							48	52	359
LNR823							52	56	143
LNR823							56	60	103
LNR823							60	63	179
LNR824	783295	7190896	580	43	-90	0	0	4	13
LNR824							4	8	24
LNR824							8	12	95
LNR824							12	16	60
LNR824							16	20	706
LNR824							20	24	1010
LNR824							24	28	520
LNR824							28	32	317
LNR824							32	36	108
LNR824							36	40	63
LNR824							40	43	1610
LNR825	783330	7190860	580	46	-90	0	0	4	27
LNR825							4	8	88
LNR825							8	12	11
LNR825							12	16	4

HolelD	Easting	Northing	RL	Depth(m)	Dip	Azimuth	From	To	Au_ppb
LNR825							16	20	7
LNR825							20	24	26
LNR825							24	28	12
LNR825							28	32	17
LNR825							32	36	13
LNR825							36	40	9
LNR825							40	44	6
LNR825							44	46	7
LNR826	783366	7190812	580	43	-90	0	0	4	9
LNR826							4	8	9
LNR826							8	12	19
LNR826							12	16	60
LNR826							16	20	15
LNR826							20	24	2
LNR826							24	28	12
LNR826							28	32	8
LNR826							32	36	4
LNR826							36	40	44
LNR827	783409	7190788	580	53	-90	0	0	4	6
LNR827							4	8	17
LNR827							8	12	209
LNR827							12	16	5
LNR827							16	20	5
LNR827							20	24	83
LNR827							24	28	59
LNR827							28	32	9
LNR827							32	36	190
LNR827							36	40	49
LNR827							40	44	144
LNR827							44	48	93
LNR827							48	52	69
LNR827							52	53	47
LNR828	783445	7190759	580	43	-90	0	0	4	6
LNR828							4	8	4
LNR828							8	12	16
LNR828							12	16	10
LNR828							16	20	6
LNR828							20	24	6
LNR828							24	28	19
LNR828							28	32	88
LNR828							32	36	30
LNR828							36	40	62
LNR828							40	43	232
LNR829	783482	7190727	580	22	-90	0	0	4	35
LNR829							4	8	1310

Holeld	Easting	Northing	RL	Depth(m)	Dip	Azimuth	From	To	Au_ppb
LNR829							8	12	309
LNR829							12	16	296
LNR829							16	20	107
LNR829							20	22	72
LNR830	783522	7190699	580	18	-90	0	0	4	11
LNR830							4	8	24
LNR830							8	12	69
LNR830							12	16	54
LNR830							16	18	43
LNR831	783406	7191090	580	43	-90	0	0	4	10
LNR831							4	8	73
LNR831							8	12	7
LNR831							12	16	5
LNR831							16	20	29
LNR831							20	24	18
LNR831							24	28	5
LNR831							28	32	55
LNR831							32	36	10
LNR831							36	40	7
LNR831							40	43	4
LNR832	783419	7191202	580	49	-90	0	0	4	45
LNR832							4	8	51
LNR832							8	12	14
LNR832							12	16	18
LNR832							16	20	15
LNR832							20	24	232
LNR832							24	28	74
LNR832							28	32	36
LNR832							32	36	8
LNR832							36	40	34
LNR832							40	44	148
LNR832							44	49	23
LNR833	783459	7191172	580	31	-90	0	0	4	518
LNR833							4	8	17
LNR833							8	12	20
LNR833							12	16	13
LNR833							16	20	22
LNR833							20	24	34
LNR833							24	28	33
LNR833							28	31	17
LNR834	783499	7191137	580	19	-90	0	0	4	23
LNR834							4	8	36
LNR834							8	12	23
LNR834							12	16	211
LNR834							16	19	79

Holeld	Easting	Northing	RL	Depth(m)	Dip	Azimuth	From	To	Au_ppb
LNR835	783522	7191122	580	13	-90	0	0	4	30
LNR835							4	8	35
LNR835							8	12	14
LNR835							12	13	17
LNR836	783559	7191107	580	12	-90	0	0	4	22
LNR836							4	8	6
LNR836							8	12	13

