Lodestar Minerals Limited

Level 1, 31 Cliff Street Fremantle WA 6160 Tel: +61 8 9435 3200 ABN 32 127 026 528 PO Box 584 Fremantle WA 6959 Fax: +61 8 6444 7408

# ASX ANNOUNCEMENT

10 July 2017

#### **COMPANY SNAPSHOT**

LODESTAR MINERALS LIMITEDABN:32 127 026 528

CONTACT DETAILS Bill Clayton, Managing Director +61 8 9435 3200

Registered and Principal Office Level 1, 31 Cliff Street Fremantle, WA 6160

PO Box 584 Nedlands, WA, 6959

info@lodestarminerals.com.au

www.lodestarminerals.com.au

CAPITAL STRUCTURE Shares on Issue: 453,318,328 (LSR)

*Options on Issue:* 45,333,702 (listed) 41,050,127 (unlisted)

ASX: LSR

PROJECTS Peak Hill – Doolgunna: Camel Hills – gold Neds Creek – gold Marymia – gold West Pinyrinny – gold



## WIDESPREAD HIGH GRADE GOLD RESULTS ADVANCE NEDS CREEK TARGETS ON MULTIPLE FRONTS

### HIGHLIGHTS

Widespread gold mineralisation in 5,000m of aircore drilling at Neds Creek with 55 of 88 holes returning results greater than 0.1g/t Au.

- Multiple gold occurrences increase potential for significant gold discovery in fertile region 35 kilometres east of Plutonic mine.
- Single hole at Contessa confirms priority bedrock target for upcoming co-funded EIS diamond drill hole with 4m at 4.35g/t Au from 84m to end of hole.
- Drilling west of the granite contact at Brumby returned:
  - 16m at 2.1g/t from surface, including high grade intersection of 4m at 6.3g/t from 12m.
  - 8m at 1.1g/t from 24m, including 4m at 1.3g/t from 24m.
  - Widespread gold mineralisation at Central Park including
    - 4m at 8.69g/t Au from 28m and 4m at 1.61g/t Au from 44m
    - 4m at 3.35g/t Au from 36m
    - 4m at 1.43g/t Au from 32m and
- Additional positive results from Gidgee Flat include:
  - 8m at 1.98g/t Au from 28m and 8m at 2.0g/t Au from 76 in one hole
- Review of results to inform planned RC program and two cofunded EIS holes to be drilled during the current quarter.
- Maiden Lodestar drill program for the Boundary Fence prospect within the Vango Farm-in planned for the current quarter.

West Australian gold explorer Lodestar Minerals Limited, ("Lodestar" or "the Company", ASX: LSR) advises that assay results from the recently completed aircore drilling program on the Company's 100% - owned Ned's Creek project (see Figure 1) have been received.

The results show extensive gold mineralisation that further define important gold targets for follow up drilling and support the Company's view that the Contessa-Brumby area provides a significant opportunity for a major gold discovery.



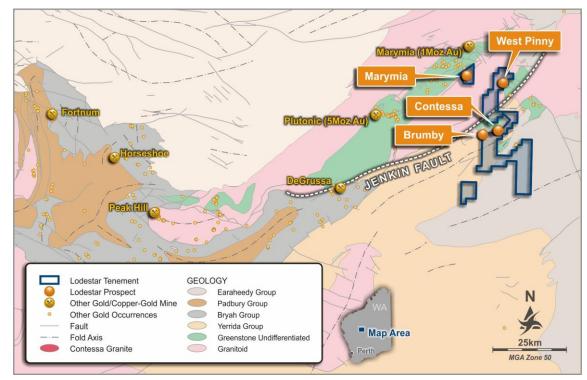



Figure 1 Ned's Creek project, showing the Brumby and Contessa gold targets.

In late May, Lodestar completed an 88 hole, 4833m aircore drilling program over a distance of 7 kilometres along the western and southern contacts of the Contessa granite (see Figure 2). The granite contact is considered to be a key structural control of gold mineralisation in the Ned's Creek and Yowereena area. The drilling specifically targeted areas where gold mineralisation had been incompletely tested.

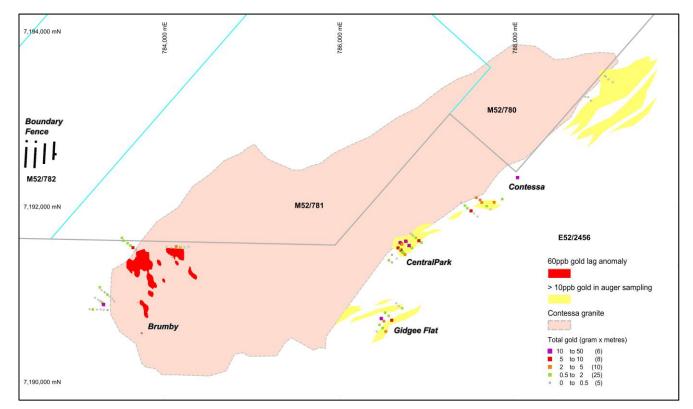



Figure 2 Drill hole location plan showing prospects, surface gold anomalies and colour coding total gold in each drill hole (grams per tonne of intersection x thickness of intersection).

#### **CONTESSA – bedrock gold target**

A single aircore hole, LNR906, tested the bedrock target intersected in LNR806 (3m at 1.0g/t Au from 96m, see Lodestar's ASX release dated 1 December 2016). LNR906 was drilled at 90 degrees to LNR806, towards grid south (130 degrees) to confirm the target and act as a pilot hole to a planned diamond drill hole to be completed under the EIS co-funded drilling program (see Figures 3 and 4).

LNR906 intersected 4m at 4.35g/t Au from 84m to end of hole and terminated due to water inflow. Both LNR806 and LNR906 were drilled to the limit of the aircore rig's capacity and the target, a siliceous unit containing oxidised sulphides, remains incompletely tested.

The Contessa bedrock target is thought to be located near the contact of the diorite and strongly sheared felsic rocks. Given the extensive distribution of supergene gold and gold anomalism through the transition zone in nearby aircore drilling the contact is an important target for planned diamond drilling to effectively test the target and obtain structural information to allow future drilling to be planned more effectively.

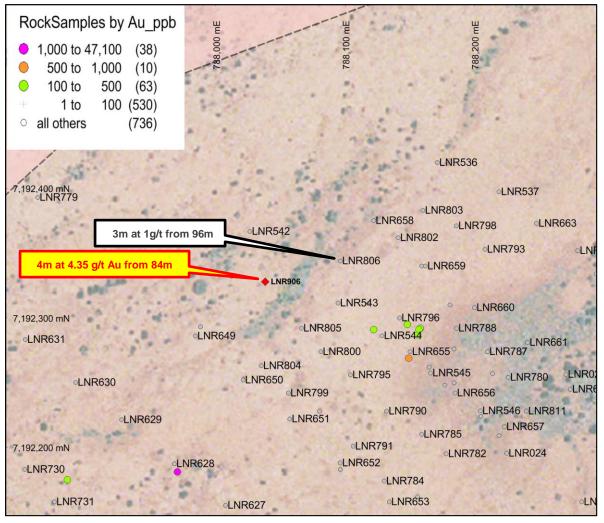



Figure 3 Bedrock gold target in LNR806 and LNR906 showing end of hole intercepts in mineralisation. Significant intersections from recent drilling shown in yellow/red boxes and previous intersections with black/white boxes. Red collars are recent drill holes.

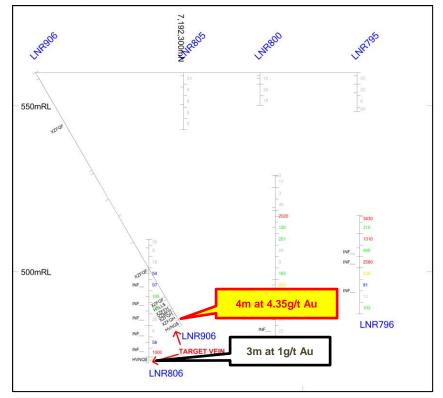



Figure 4 Cross section looking northeast showing relative intersections in LNR806 and LNR906.

### BRUMBY

In-fill drilling on 25m hole spacing tested the intersection of 4m at 1g/t Au from 20m and 3m at 1.6g/t Au from 40m to end of hole in LNR824 (see Lodestar's ASX release dated 1 December 2016), and to the north reconnaissance drilling was completed on the granite contact and within the granite, to follow up anomalous lag and rock chip sampling (see Figure 4).

LNR912 was drilled beneath LNR824 and intersected a wide zone of gold mineralisation from surface to 30m, with a high grade zone reporting 4m at 6.4g/t Au from 12m, confirming the presence of mineralisation initially reported in LNR824. The dimensions of the mineralisation are unknown. It is located adjacent to a shear zone intersected in LNR825, whether it is shear-related or a mineralised intrusive plug in an area where several intrusive phases may be present is yet to be determined. This target will be tested by EIS co-funded diamond drilling to determine structure and rock type to assist future drilling.

Reconnaissance drilling on the northwestern contact of the Brumby granite reported low level mineralisation of >0.1g/t Au with a best intersection of 8m at 1.1g/t Au from 24m to end of hole in LNR886, adjacent to the granite contact. The drilling is further confirmation of the potential for intrusion-related mineralisation to occur along the largely untested western granite margin.

A single line of reconnaissance drilling, 250m long, tested near surface gold anomalies in the interior of the granite; four of the six holes reported >0.1g/t gold with a maximum of 0.44g/t Au. The drilling again demonstrates the large scale of gold mineralisation within the western margin of the intrusion, indicating a large hydrothermal system capable of hosting significant mineralisation.

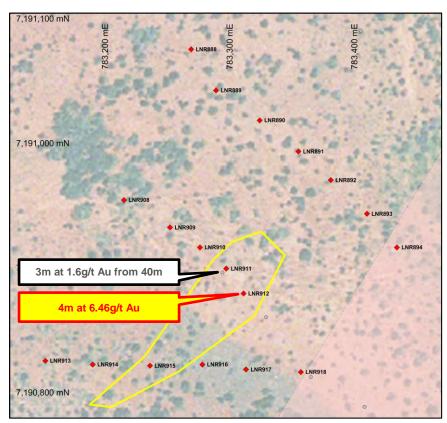



Figure 5 Brumby drilling - western contact, yellow outline marks favourable lithology.

#### **GIDGEE FLAT**

Follow up drilling targeted significant saprolite gold mineralisation in LNR747, 10m at 1.89g/t Au from 40m and lower magnitude anomalies in adjacent holes (see Lodestar's ASX announcement dated 24 November 2014). Drilling has now been completed on 80m by 60m centres (see Figure 6) and significant outcomes from the recent drilling include;

- LNR875, on the end of a traverse, intersected 8m at 1.98g/t Au from 28m and 8m at 2.1g/t Au from 76m, the hole ended in the mineralisation at 88m.
- LNR876, also at the end of a traverse, intersected low level gold mineralisation at the end of hole after intersecting vein quartz, the anomaly and quartz vein is largely untested.

Following drilling, results from rock samples taken from goethitic zones in a fracture system oriented at 130 degrees (parallel to drilling) near a drill traverse, reported results of 2.9 and 3.9g/t Au. The samples provide evidence of a brittle structural control on gold mineralisation at Gidgee Flat, parallel to drilling, and underline the importance of orienting drilling correctly when testing targets based on limited surface information.

The Gidgee Flat target remains open and the results will be reviewed, taking into account the latest information.

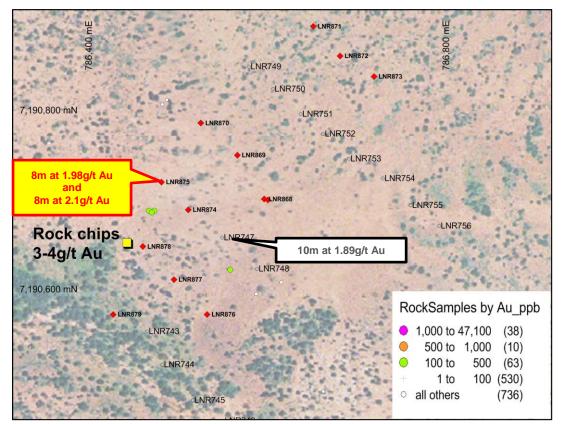



Figure 6 Gidgee Flat drilling showing significant intersections.

#### **CENTRAL PARK (formerly Contessa SW)**

Central Park is located adjacent to the southern granite contact; two lines of reconnaissance drilling completed in 2011 and 2014 reported significant supergene gold mineralisation including 5m at 8.90g/t Au from 30m (LNR758) (see Lodestar's ASX announcement dated 24 November 2014).

Drilling intersected thick intercepts of low-level gold mineralisation over an area of 200m by 200m (see Figure 7). Best intercepts include;

- 4m at 3.35g/t Au from 36m in LNR858 (vein quartz recorded)
- 4m at 1.37g/t Au from 72m in LNR853 (vein quartz recorded)
- 4m at 1.43g/t Au from 32m in LNR856 (vein quartz recorded)
- 4m at 1.45g/t Au from 32m in LNR861 (vein quartz recorded)

In addition to vein quartz identified in several drill holes, strongly weathered and goethitic samples were recovered from LNR857 and follow up hole LNR899.

Results from these holes, at the end of a traverse, include;

- 4m at 8.69g/t Au from 28m and 4m at 1.61g/t Au from 44m in LNR899
- LNR857 terminated in the anomaly at 78m, reporting a thick intersection of mineralisation reporting results up to 0.59g/t Au.

The extent and tenor of the Central Park anomalies identified by drilling is very positive at this early stage and further drilling is planned as a priority.

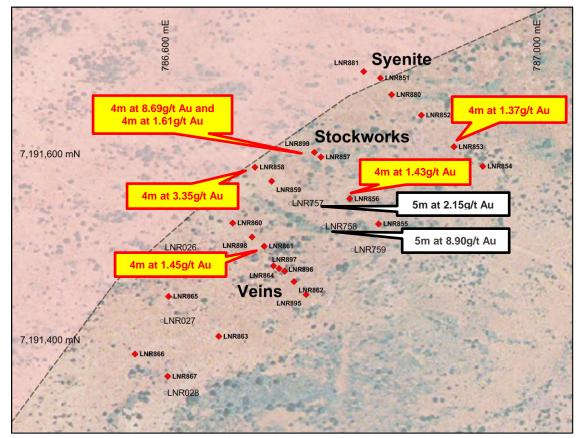



Figure 7 Central Park drilling showing significant intersections.

#### CONCLUSION AND NEXT STEPS

Lodestar will now complete a detailed review of the results of the aircore program which appear to support and will further develop to the Company's regional geological model. The outcomes of this review will assist with targeting the next programs of drilling.

Two EIS co-funded diamond drill holes, one each at Contessa and Brumby, will be completed to improve understanding of the geological sequence and structural controls on mineralisation. Statutory approvals are in place and it is expected this drilling will commence in August.

Based on current information, priority areas for follow up drilling are Gidgee Flat and Central Park to improve definition of mineralisation at these prospects. A first drill program at the Yowereena farm-in with Vango Mining Limited (ASX: VAN) is also currently being planned.

Table 1 summarises significant intercepts from the 88 hole aircore drilling program at Neds Creek. Table 2 at the end of this announcement lists the results from all 88 drill holes.

Table 1 Significant intersections from recently completed aircore drilling, Neds Creek. Note \* denotes gold at end of hole, an open intersection.

| Hole   | DrillType | Easting | Northing | RL  | Depth<br>(m) | Dip | Azimuth | From | То  | Length | Au g/t |
|--------|-----------|---------|----------|-----|--------------|-----|---------|------|-----|--------|--------|
| LNR840 | AC        | 787465  | 7191978  | 560 | 84           | -90 | 0       | 80   | 81  | 1      | 3.14   |
|        |           |         |          |     |              |     |         | 83   | 84  | 1      | 0.52*  |
| LNR853 | AC        | 786912  | 7191607  | 560 | 90           | -90 | 0       | 72   | 76  | 4      | 1.37   |
| LNR856 | AC        | 786800  | 7191551  | 560 | 72           | -90 | 0       | 32   | 36  | 4      | 1.43   |
| LNR857 | AC        | 786769  | 7191596  | 560 | 78           | -90 | 0       | 74   | 78  | 4      | 0.12*  |
| LNR858 | AC        | 786698  | 7191585  | 560 | 78           | -90 | 0       | 36   | 40  | 4      | 3.35   |
| LNR859 | AC        | 786716  | 7191570  | 560 | 71           | -90 | 0       | 68   | 71  | 3      | 0.14*  |
| LNR861 | AC        | 786708  | 7191500  | 560 | 45           | -90 | 0       | 32   | 36  | 4      | 1.45   |
| LNR875 | AC        | 786483  | 7190719  | 560 | 88           | -90 | 0       | 28   | 32  | 4      | 1.21   |
|        |           |         |          |     |              |     |         | 32   | 36  | 4      | 2.75   |
|        |           |         |          |     |              |     |         | 76   | 80  | 4      | 1.37   |
|        |           |         |          |     |              |     |         | 80   | 84  | 4      | 2.82   |
|        |           |         |          |     |              |     |         | 84   | 88  | 4      | 0.89*  |
| LNR876 | AC        | 786534  | 7190571  | 560 | 104          | -90 | 0       | 100  | 104 | 4      | 0.21*  |
| LNR877 | AC        | 786497  | 7190610  | 560 | 64           | -90 | 0       | 4    | 8   | 4      | 0.19*  |
| LNR885 | AC        | 783619  | 7191552  | 580 | 72           | -90 | 0       | 68   | 72  | 4      | 0.17*  |
| LNR886 | AC        | 783648  | 7191528  | 580 | 44           | -90 | 0       | 24   | 28  | 4      | 1.26   |
| LNR887 | AC        | 783683  | 7191506  | 580 | 12           | -90 | 0       | 8    | 12  | 4      | 0.11*  |
| LNR899 | AC        | 786762  | 7191601  | 560 | 84           | -90 | 0       | 28   | 32  | 4      | 8.69   |
|        |           |         |          |     |              |     |         | 44   | 48  | 4      | 1.61   |
| LNR906 | AC        | 788038  | 7192328  | 560 | 88           | -60 | 130     | 84   | 88  | 4      | 4.35*  |
| LNR907 | AC        | 786602  | 7190699  | 560 | 74           | -90 | 0       | 0    | 4   | 4      | 2.16   |
| LNR912 | AC        | 783312  | 7190879  | 580 | 52           | -60 | 310     | 12   | 16  | 4      | 6.46   |
| LNR918 | AC        | 783358  | 7190816  | 580 | 58           | -60 | 270     | 56   | 58  | 2      | 0.14*  |
| LNR920 | AC        | 784083  | 7191528  | 580 | 13           | -60 | 270     | 11   | 13  | 2      | 0.10*  |
| LNR921 | AC        | 784142  | 7191540  | 580 | 13           | -60 | 270     | 11   | 13  | 2      | 0.10*  |
| LNR922 | AC        | 784189  | 7191532  | 580 | 13           | -60 | 270     | 0    | 4   | 4      | 0.13*  |
| LNR923 | AC        | 784237  | 7191531  | 580 | 13           | -60 | 270     | 11   | 13  | 2      | 0.26*  |

**Bill Clayton** Managing Director Media Enquiries Michael Vaughan, Fivemark Partners michael.vaughan@fivemark.com.au m: +61 422 602 720

## Table 2 Neds Creek exploration drilling results: Contessa - Brumby

| Hole   | Туре | Easting | Northing | RL  | Depth<br>(m) | Dip | Azimuth | From                  | То      | Au_ppb   | Au g/t |
|--------|------|---------|----------|-----|--------------|-----|---------|-----------------------|---------|----------|--------|
| LNR837 | AC   | 787581  | 7191883  | 560 | 47           | -90 | 0       | no sig                | nifican | t assays | 0      |
| LNR838 | AC   | 787541  | 7191917  | 560 | 34           | -90 | 0       | no significant assays |         | 0        |        |
| LNR839 | AC   | 787508  | 7191948  | 560 | 47           | -90 | 0       | 24                    | 28      | 614      | 0.614  |
|        |      |         |          |     |              |     |         | 28                    | 32      | 801      | 0.801  |
| LNR840 | AC   | 787465  | 7191978  | 560 | 84           | -90 | 0       | 48                    | 52      | 463      | 0.463  |
|        |      |         |          |     |              |     |         | 64                    | 68      | 123      | 0.123  |
|        |      |         |          |     |              |     |         | 72                    | 73      | 229      | 0.229  |
|        |      |         |          |     |              |     |         | 74                    | 75      | 205      | 0.205  |
|        |      |         |          |     |              |     |         | 76                    | 77      | 303      | 0.303  |
|        |      |         |          |     |              |     |         | 77                    | 78      | 370      | 0.37   |
|        |      |         |          |     |              |     |         | 78                    | 79      | 106      | 0.106  |
|        |      |         |          |     |              |     |         | 79                    | 80      | 382      | 0.382  |
|        |      |         |          |     |              |     |         | 80                    | 81      | 3140     | 3.14   |
|        |      |         |          |     |              |     |         | 81                    | 82      | 180      | 0.18   |
|        |      |         |          |     |              |     |         | 82                    | 83      | 499      | 0.499  |
|        |      |         |          |     |              |     |         | 83                    | 84      | 520      | 0.52   |
| LNR841 | AC   | 787438  | 7192007  | 560 | 82           | -90 | 0       | 44                    | 48      | 125      | 0.125  |
| LNR842 | AC   | 787396  | 7192042  | 560 | 6            | -90 | 0       | -                     |         | t assays |        |
| LNR843 | AC   | 787864  | 7192082  | 560 | 65           | -90 | 0       | 28                    | 32      | 448      | 0.448  |
| LNR844 | AC   | 787771  | 7192045  | 560 | 53           | -90 | 0       | 32                    | 36      | 112      | 0.112  |
|        |      |         |          |     |              |     |         | 36                    | 40      | 165      | 0.165  |
|        |      |         |          |     |              |     |         | 40                    | 44      | 364      | 0.364  |
|        |      |         |          |     |              |     |         | 44                    | 48      | 410      | 0.41   |
| LNR845 | AC   | 787729  | 7191965  | 560 | 10           | -90 | 0       | _                     | nifican | t assays | 0      |
| LNR846 | AC   | 787686  | 7192002  | 560 | 53           | -90 | 0       | 40                    | 44      | 134      | 0.134  |
| LNR847 | AC   | 787630  | 7192043  | 560 | 89           | -90 | 0       | 36                    | 40      | 593      | 0.593  |
|        |      |         |          |     |              |     |         | 40                    | 44      | 604      | 0.604  |
| LNR848 | AC   | 787610  | 7192072  | 560 | 122          | -90 | 0       | 48                    | 52      | 555      | 0.555  |
|        |      |         |          |     |              |     |         | 52                    | 56      | 434      | 0.434  |
|        |      |         |          |     |              |     |         | 56                    | 60      | 123      | 0.123  |
|        |      |         |          |     |              |     |         | 64                    | 68      | 112      | 0.112  |
|        |      |         |          |     |              |     |         | 108                   | 112     | 143      | 0.143  |
|        |      |         |          |     |              |     |         | 112                   | 115     | 284      | 0.284  |
|        |      |         |          |     |              |     |         | 115                   | 119     | 114      | 0.114  |
| LNR849 | AC   | 787568  | 7192098  | 560 | 114          | -90 | 0       | 80                    | 84      | 896      | 0.896  |
|        |      |         |          |     |              |     |         | 84                    | 88      | 203      | 0.203  |
|        |      |         |          |     |              |     |         | 88                    | 92      | 146      | 0.146  |
|        |      |         |          |     |              |     |         | 96                    | 100     | 172      | 0.172  |
| LNR850 | AC   | 789045  | 7193481  | 560 | 45           | -90 | 0       | no sig                | nifican | t assays | 0      |
| LNR851 | AC   | 786833  | 7191681  | 560 | 54           | -90 | 0       | no sig                | nifican | t assays | 0      |
| LNR852 | AC   | 786877  | 7191641  | 560 | 98           | -90 | 0       | 64                    | 68      | 342      | 0.342  |
| LNR853 | AC   | 786912  | 7191607  | 560 | 90           | -90 | 0       | 72                    | 76      | 1370     | 1.37   |
|        |      |         |          |     |              |     |         | 76                    | 80      | 132      | 0.132  |

10 July 2017

| Hole   | Туре | Easting | Northing | RL  | Depth<br>(m) | Dip | Azimuth | From     | То       | Au_ppb     | Au g/t         |
|--------|------|---------|----------|-----|--------------|-----|---------|----------|----------|------------|----------------|
| LNR854 | AC   | 786943  | 7191586  | 560 | 90           | -90 | 0       | 48       | 52       | 158        | 0.158          |
|        |      |         |          |     |              |     |         | 52       | 56       | 103        | 0.103          |
| LNR855 | AC   | 786831  | 7191524  | 560 | 63           | -90 | 0       | 28       | 32       | 439        | 0.439          |
|        |      |         |          |     |              |     |         | 36       | 40       | 172        | 0.172          |
|        |      |         |          |     |              |     |         | 40       | 44       | 113        | 0.113          |
|        |      |         |          |     |              |     |         | 48       | 52       | 117        | 0.117          |
|        |      | 700000  | 7404554  | 500 | 70           | 00  | 0       | 52       | 56       | 110        | 0.11           |
| LNR856 | AC   | 786800  | 7191551  | 560 | 72           | -90 | 0       | 4        | 8        | 151        | 0.151          |
|        |      |         |          |     |              |     |         | 8<br>12  | 12<br>16 | 428<br>972 | 0.428<br>0.972 |
|        |      |         |          |     |              |     |         | 24       | 28       | 103        | 0.972          |
|        |      |         |          |     |              |     |         | 24       | 32       | 777        | 0.103          |
|        |      |         |          |     |              |     |         | 32       | 36       | 1430       | 1.43           |
|        |      |         |          |     |              |     |         | 36       | 40       | 345        | 0.345          |
| LNR857 | AC   | 786769  | 7191596  | 560 | 78           | -90 | 0       | 40       | 44       | 161        | 0.161          |
|        |      |         |          |     |              |     |         | 44       | 48       | 589        | 0.589          |
| -      |      |         |          |     |              |     |         | 48       | 52       | 365        | 0.365          |
|        |      |         |          |     |              |     |         | 52       | 56       | 125        | 0.125          |
|        |      |         |          |     |              |     |         | 60       | 64       | 123        | 0.123          |
|        |      |         |          |     |              |     |         | 64       | 68       | 426        | 0.426          |
|        |      |         |          |     |              |     |         | 74       | 78       | 122        | 0.122          |
| LNR858 | AC   | 786698  | 7191585  | 560 | 78           | -90 | 0       | 24       | 28       | 511        | 0.511          |
|        |      |         |          |     |              |     |         | 28       | 32       | 605        | 0.605          |
|        |      |         |          |     |              |     |         | 36       | 40       | 3350       | 3.35           |
|        |      |         |          |     |              |     |         | 44       | 48       | 359        | 0.359          |
|        |      |         |          |     |              |     |         | 48       | 52       | 131        | 0.131          |
| LNR859 | AC   | 786716  | 7191570  | 560 | 71           | -90 | 0       | 24       | 28       | 362        | 0.362          |
|        |      |         |          |     |              |     |         | 28       | 32       | 370        | 0.37           |
|        |      |         |          |     |              |     |         | 32<br>36 | 36       | 716        | 0.716          |
|        |      |         |          |     |              |     |         | 30<br>44 | 40<br>48 | 120<br>555 | 0.12           |
|        |      |         |          |     |              |     |         | 60       | 48<br>64 | 151        | 0.555<br>0.151 |
|        |      |         |          |     |              |     |         | 64       | 68       | 107        | 0.107          |
|        |      |         |          |     |              |     |         | 68       | 71       | 144        | 0.144          |
| LNR860 | AC   | 786674  | 7191525  | 560 | 46           | -90 | 0       | 24       | 28       | 190        | 0.19           |
|        | -    |         |          |     |              |     |         | 28       | 32       | 792        | 0.792          |
|        |      |         |          |     |              |     |         | 32       | 36       | 477        | 0.477          |
|        |      |         |          |     |              |     |         | 36       | 40       | 207        | 0.207          |
| LNR861 | AC   | 786708  | 7191500  | 560 | 45           | -90 | 0       | 24       | 28       | 125        | 0.125          |
|        |      |         |          |     |              |     |         | 28       | 32       | 105        | 0.105          |
|        |      |         |          |     |              |     |         | 32       | 36       | 1450       | 1.45           |
|        |      |         |          |     |              |     |         | 36       | 40       | 103        | 0.103          |
| LNR862 | AC   | 786740  | 7191462  | 560 | 51           | -90 | 0       | 23       | 24       | 126        | 0.126          |
|        |      |         |          |     |              |     |         | 27       | 28       | 481        | 0.481          |
|        |      |         |          |     |              |     |         | 29       | 30       | 321        | 0.321          |

| Hole              | Туре | Easting | Northing      | RL  | Depth<br>(m) | Dip | Azimuth | From                                           | То       | Au_ppb   | Au g/t |
|-------------------|------|---------|---------------|-----|--------------|-----|---------|------------------------------------------------|----------|----------|--------|
|                   |      |         |               |     |              |     |         | 30                                             | 31       | 114      | 0.114  |
|                   |      |         |               |     |              |     |         | 31                                             | 32       | 328      | 0.328  |
|                   |      |         |               |     |              |     |         | 33                                             | 34       | 177      | 0.177  |
|                   |      |         |               |     |              |     |         | 37                                             | 38       | 103      | 0.103  |
|                   |      |         |               |     |              |     |         | 41                                             | 42       | 104      | 0.104  |
|                   |      |         |               |     |              |     |         | 43                                             | 44       | 143      | 0.143  |
|                   |      |         |               |     |              |     |         | 47                                             | 48       | 110      | 0.11   |
| LNR863            | AC   | 786659  | 7191403       | 560 | 50           | -90 | 0       |                                                |          | t assays | 0      |
| LNR864            | AC   | 786724  | 7191476       | 560 | 56           | -90 | 0       |                                                |          | t assays | 0      |
| LNR865            | AC   | 786605  | 7191446       | 560 | 61           | -90 | 0       | 28                                             | 32       | 110      | 0.11   |
|                   |      |         |               |     |              |     |         | 36                                             | 40       | 124      | 0.124  |
| LNR866            | AC   | 786569  | 7191384       | 560 | 62           | -90 | 0       | 32                                             | 36       | 186      | 0.186  |
|                   |      |         |               |     |              |     |         | 44                                             | 48       | 103      | 0.103  |
|                   |      |         |               |     |              |     |         | 45                                             | 46       | 304      | 0.304  |
|                   |      |         | = 1 0 1 0 0 0 |     |              |     |         | 49                                             | 50       | 126      | 0.126  |
| LNR867            | AC   | 786604  | 7191360       | 560 | 66           | -90 | 0       | 28                                             | 32       | . 114    | 0.114  |
| LNR868            | AC   | 786598  | 7190700       | 560 | 6            | -90 | 0       |                                                |          | t assays | 0.446  |
| LNR869            | AC   | 786568  | 7190749       | 560 | 63           | -90 | 0       | 20                                             | 24       | 416      | 0.416  |
| LNR870            | AC   | 786527  | 7190785       | 560 | 58           | -90 | 0       | 24<br>52                                       | 28<br>56 | 185      | 0.185  |
| LNR871            | AC   | 786653  | 7190893       | 560 | 48           | -90 | 0       |                                                |          | 128      | 0.128  |
| LINR871<br>LNR872 | AC   | 786683  | 7190893       | 560 | 40<br>53     | -90 | 0       | no significant assays<br>no significant assays |          | 0        |        |
| LNR872            | AC   | 786721  | 7190800       | 560 | 51           | -90 | 0       | 28                                             | 32       | 110 110  | 0.11   |
| LININO75          | AC   | 780721  | /19083/       | 500 | 51           | -90 | 0       | 36                                             | 40       | 110      | 0.11   |
| LNR874            | AC   | 786513  | 7190688       | 560 | 72           | -90 | 0       | 40                                             | 44       | 104      | 0.184  |
|                   | 710  | 700515  | /190000       | 500 | , 2          | 50  |         | 44                                             | 48       | 216      | 0.216  |
|                   |      |         |               |     |              |     |         | 52                                             | 56       | 553      | 0.553  |
|                   |      |         |               |     |              |     |         | 56                                             | 60       | 287      | 0.287  |
| LNR875            | AC   | 786483  | 7190719       | 560 | 88           | -90 | 0       | 28                                             | 32       | 1210     | 1.21   |
|                   |      |         |               |     |              |     |         | 32                                             | 36       | 2750     | 2.75   |
|                   |      |         |               |     |              |     |         | 56                                             | 60       | 199      | 0.199  |
|                   |      |         |               |     |              |     |         | 64                                             | 68       | 184      | 0.184  |
|                   |      |         |               |     |              |     |         | 72                                             | 76       | 583      | 0.583  |
|                   |      |         |               |     |              |     |         | 76                                             | 80       | 1370     | 1.37   |
|                   |      |         |               |     |              |     |         | 80                                             | 84       | 2820     | 2.82   |
|                   |      |         |               |     |              |     |         | 84                                             | 88       | 890      | 0.89   |
| LNR876            | AC   | 786534  | 7190571       | 560 | 104          | -90 | 0       | 32                                             | 36       | 117      | 0.117  |
|                   |      |         |               |     |              |     |         | 48                                             | 52       | 125      | 0.125  |
|                   |      |         |               |     |              |     |         | 84                                             | 88       | 207      | 0.207  |
|                   |      |         |               |     |              |     |         | 96                                             | 100      | 364      | 0.364  |
|                   |      |         |               |     |              |     |         | 100                                            | 104      | 214      | 0.214  |
| LNR877            | AC   | 786497  | 7190610       | 560 | 64           | -90 | 0       | 4                                              | 8        | 189      | 0.189  |
| LNR878            | AC   | 786462  | 7190647       | 560 | 54           | -90 | 0       | 44                                             | 48       | 287      | 0.287  |
| LNR879            | AC   | 786429  | 7190571       | 560 | 90           | -90 | 0       | no sigi                                        | nifican  | t assays | 0      |
| LNR880            | AC   | 786845  | 7191663       | 560 | 58           | -90 | 0       |                                                |          | t assays | 0      |

| Hole              | Туре     | Easting          | Northing           | RL         | Depth<br>(m) | Dip        | Azimuth    | From     | То             | Au_ppb          | Au g/t |
|-------------------|----------|------------------|--------------------|------------|--------------|------------|------------|----------|----------------|-----------------|--------|
| LNR882            | AC       | 783522           | 7191640            | 580        | 75           | -90        | 0          | 28       | 32             | 282             | 0.282  |
| LNR883            | AC       | 783539           | 7191607            | 580        | 54           | -90        | 0          | 28       | 32             | 396             | 0.396  |
| LNR884            | AC       | 783587           | 7191577            | 580        | 39           | -90        | 0          | 20       | 24             | 182             | 0.182  |
|                   |          |                  |                    |            |              |            |            | 32       | 36             | 119             | 0.119  |
| LNR885            | AC       | 783619           | 7191552            | 580        | 72           | -90        | 0          | 28       | 32             | 380             | 0.38   |
|                   |          |                  |                    |            |              |            |            | 68       | 72             | 167             | 0.167  |
| LNR886            | AC       | 783648           | 7191528            | 580        | 44           | -90        | 0          | 24       | 28             | 1260            | 1.26   |
|                   |          |                  |                    |            |              |            |            | 28       | 32             | 953             | 0.953  |
| LNR887            | AC       | 783683           | 7191506            | 580        | 12           | -90        | 0          | 8        | 12             | 112             | 0.112  |
| LNR888            | AC       | 783270           | 7191075            | 580        | 45           | -60        | 310        | 24       | 28             | 371             | 0.371  |
| LNR889            | AC       | 783290           | 7191042            | 580        | 42           | -60        | 310        | -        |                | t assays        | 0      |
| LNR890            | AC       | 783325           | 7191018            | 580<br>580 | 28<br>36     | -60<br>-60 | 310        | 20<br>16 | 24<br>20       | 107             | 0.107  |
| LNR891<br>LNR892  | AC<br>AC | 783356<br>783382 | 7190993<br>7190970 | 580        | 43           | -60        | 310<br>310 |          |                | 494<br>t assays | 0.494  |
| LINR892<br>LNR893 | AC       | 783411           | 7190970            | 580        | 43           | -60        | 310        |          |                | t assays        | 0      |
| LNR893            | AC       | 783411           | 7190943            | 580        | 36           | -60        | 310        | -        |                | t assays        | 0      |
| LNR895            | AC       | 786753           | 7191448            | 560        | 60           | -60        | 310        | 32       | 36             | 212             | 0.212  |
| LINICOSS          | 7.0      | 700733           | /191440            | 500        | 00           | 00         | 510        | 36       | 40             | 265             | 0.212  |
|                   |          |                  |                    |            |              |            |            | 40       | 44             | 184             | 0.184  |
|                   |          |                  |                    |            |              |            |            | 52       | 56             | 104             | 0.104  |
| LNR896            | AC       | 786730           | 7191473            | 560        | 57           | -60        | 130        | 32       | 36             | 106             | 0.106  |
|                   |          |                  |                    |            |              |            |            | 40       | 44             | 208             | 0.208  |
| LNR897            | AC       | 786718           | 7191479            | 560        | 54           | -60        | 310        | 40       | 44             | 147             | 0.147  |
| LNR898            | AC       | 786695           | 7191510            | 560        | 46           | -60        | 130        | 40       | 44             | 131             | 0.131  |
| LNR899            | AC       | 786762           | 7191601            | 560        | 84           | -90        | 0          | 28       | 32             | 8690            | 8.69   |
|                   |          |                  |                    |            |              |            |            | 40       | 44             | 260             | 0.26   |
|                   |          |                  |                    |            |              |            |            | 44       | 48             | 1610            | 1.61   |
|                   |          |                  |                    |            |              |            |            | 48       | 52             | 407             | 0.407  |
|                   |          |                  |                    |            |              |            |            | 52       | 56             | 239             | 0.239  |
| LNR900            | AC       | 789033           | 7193486            | 560        | 61           | -90        | 0          |          |                | t assays        | 0      |
| LNR901            | AC       | 789075           | 7193451            | 560        | 61           | -90        | 0          | •        |                | t assays        | 0      |
| LNR902            | AC       | 789125           | 7193415            | 560        | 64           | -90        | 0          |          |                | t assays        | 0      |
| LNR903            | AC       | 788813           | 7193249            | 560        | 60           | -90        | 0          | -        |                | t assays        | 0      |
| LNR904            | AC       | 788845           | 7193245            | 560        | 64           | -90        | 0          | -        |                | t assays        | 0      |
| LNR905            | AC       | 788877           | 7193206            | 560        | 70           | -90        | 0          |          |                | t assays        | 0      |
| LNR906            | AC       | 788038           | 7192328            | 560        | 88           | -60        | 130        | 64       | 68             | 107             | 0.107  |
|                   |          |                  |                    |            |              |            |            | 68       | 72             | 116             | 0.116  |
|                   |          |                  |                    |            |              |            |            | 76       | 80             | 103             | 0.103  |
|                   |          |                  |                    |            |              |            |            | 80<br>84 | 84<br>88       | 427             | 0.427  |
| LNR907            | AC       | 786602           | 7190699            | 560        | 74           | -90        | 0          | 84<br>0  | <u>88</u><br>4 | 4350<br>2160    | 4.35   |
| LINN907           | AL       | 100002           | 1190099            | 500        | /4           | -90        | U          | 32       | 36             | 197             | 2.16   |
| LNR908            | AC       | 783216           | 7190954            | 580        | 31           | -60        | 310        |          |                | t assays        | 0.197  |
| LNR909            | AC       | 783210           | 7190932            | 580        | 37           | -60        | 310        |          |                | t assays        | 0      |
| LNR910            | AC       | 783277           | 7190932            | 580        | 40           | -60        | 310        |          |                | t assays        | 0      |

| Hole   | Туре | Easting | Northing | RL  | Depth<br>(m) | Dip | Azimuth | From    | То      | Au_ppb   | Au g/t |
|--------|------|---------|----------|-----|--------------|-----|---------|---------|---------|----------|--------|
| LNR911 | AC   | 783298  | 7190899  | 580 | 49           | -60 | 310     | 28      | 32      | 134      | 0.134  |
|        |      |         |          |     |              |     |         | 32      | 36      | 306      | 0.306  |
|        |      |         |          |     |              |     |         | 40      | 44      | 113      | 0.113  |
| LNR912 | AC   | 783312  | 7190879  | 580 | 52           | -60 | 310     | 0       | 4       | 656      | 0.656  |
|        |      |         |          |     |              |     |         | 4       | 8       | 728      | 0.728  |
|        |      |         |          |     |              |     |         | 8       | 12      | 549      | 0.549  |
|        |      |         |          |     |              |     |         | 12      | 16      | 6460     | 6.46   |
|        |      |         |          |     |              |     |         | 20      | 24      | 821      | 0.821  |
|        |      |         |          |     |              |     |         | 24      | 28      | 720      | 0.72   |
|        |      |         |          |     |              |     |         | 28      | 32      | 721      | 0.721  |
|        |      |         |          |     |              |     |         | 36      | 40      | 260      | 0.26   |
|        |      |         |          |     |              |     |         | 40      | 44      | 200      | 0.2    |
|        |      |         |          |     |              |     |         | 44      | 48      | 103      | 0.103  |
| LNR913 | AC   | 783153  | 7190825  | 580 | 61           | -60 | 270     | no sigi | nifican | t assays | 0      |
| LNR914 | AC   | 783191  | 7190822  | 580 | 43           | -60 | 270     | 32      | 36      | 195      | 0.195  |
| LNR915 | AC   | 783237  | 7190821  | 580 | 46           | -60 | 270     | no sigi | nifican | t assays | 0      |
| LNR916 | AC   | 783279  | 7190822  | 580 | 34           | -60 | 270     | no sigi | nifican | t assays | 0      |
| LNR917 | AC   | 783314  | 7190818  | 580 | 46           | -60 | 270     | no sigi | nifican | t assays | 0      |
| LNR918 | AC   | 783358  | 7190816  | 580 | 58           | -60 | 270     | 4       | 8       | 108      | 0.108  |
|        |      |         |          |     |              |     |         | 56      | 58      | 143      | 0.143  |
| LNR919 | AC   | 784032  | 7191535  | 580 | 22           | -60 | 270     | no sigi | nifican | t assays | 0      |
| LNR920 | AC   | 784083  | 7191528  | 580 | 13           | -60 | 270     | 11      | 13      | 104      | 0.104  |
| LNR921 | AC   | 784142  | 7191540  | 580 | 13           | -60 | 270     | 4       | 8       | 443      | 0.443  |
|        |      |         |          |     |              |     |         | 8       | 11      | 148      | 0.148  |
|        |      |         |          |     |              |     |         | 11      | 13      | 101      | 0.101  |
| LNR922 | AC   | 784189  | 7191532  | 580 | 13           | -60 | 270     | 0       | 4       | 132      | 0.132  |
| LNR923 | AC   | 784237  | 7191531  | 580 | 13           | -60 | 270     | 11      | 13      | 264      | 0.264  |
| LNR924 | AC   | 784283  | 7191540  | 580 | 13           | -60 | 270     | no sigi | nifican | t assays | 0      |

#### **Competent Person Statement**

The information in this report that relates to Exploration Results is based on information compiled by Bill Clayton, Managing Director, who is a Member of the Australasian Institute of Geoscientists and has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Clayton consents to the inclusion in this report of the matters based on the information in the form and context in which it appears.

The information in this announcement that relates to previously released exploration results was disclosed under JORC 2012 in the ASX announcements dated 24<sup>th</sup> November 2014 "Contessa Drilling Update" and 1<sup>st</sup> December 2016 "Contessa – Brumby Aircore Drilling Results". These announcements are available to view on the Lodestar website. The company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement. The company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

# JORC Code, 2012 Edition

# Section 1 Sampling Techniques and Data

| Criteria                    | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>techniques      | <ul> <li>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</li> </ul> | <ul> <li>Aircore drill holes were sampled at 1m intervals from a cyclone on the rig and collected in sequence in plastic bags. From 0 metres to end of hole, 1m samples were composited to 4 metre samples and a 2.5kg sample is submitted for assay. Sample recoveries were monitored. Samples are logged and ground conditions that impact sample recoveries are recorded in the sample and geology ledger.</li> <li>Sample representivity is maintained by placing the composite samples in a pre-numbered calico bag with a corresponding sample book entry. Certified reference materials, field duplicates and laboratory repeat samples are analysed routinely.</li> <li>Sample results reported in Tables 1 and 2 and the Annexure used the sampling protocol described below; Samples from 0 metres to end of hole were collected as 4 metre composites by spearing consistently down the side of bagged 1 metre samples using a PVC spear. This method is applied as a first-pass screening for anomalous gold results. Approximately 2.5kg of material was dried, crushed pulverised and split to produce a 40g charge for aqua regia digest and ICPMS (DL 1ppb Au).</li> </ul> |
| Drilling<br>techniques      | <ul> <li>Drill type (eg core, reverse circulation, open-hole<br/>hammer, rotary air blast, auger, Bangka, sonic,<br/>etc) and details (eg core diameter, triple or<br/>standard tube, depth of diamond tails, face-<br/>sampling bit or other type, whether core is<br/>oriented and if so, by what method, etc).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>Aircore method using a 3.34" blade bit, hammer<br/>bit used for end of hole samples if in<br/>mineralisation or silicified rock. Non-core<br/>method, no downhole surveys were recorded.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Drill<br>sample<br>recovery | <ul> <li>Method of recording and assessing core and chip sample recoveries and results assessed.</li> <li>Measures taken to maximise sample recovery and ensure representative nature of the samples.</li> <li>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>Sample recoveries and wet samples were monitored and included in Lodestar's drill hole database.</li> <li>Samples collected from a cyclone at 1 metre intervals in plastic bags and laid in rows of 10 sequentially. Drill sampling equipment was cleaned regularly to minimise contamination.</li> <li>Lodestar monitors the distribution of high grade gold and sample recoveries, anomalous samples do not appear to be significantly affected by sample smearing although wet samples are present in some areas. The purpose of the drilling is to identify areas anomalous in gold rather than quantify gold content.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| Criteria                                                | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Logging                                                 | <ul> <li>Whether core and chip samples<br/>have been geologically and<br/>geotechnically logged to a level of<br/>detail to support appropriate<br/>Mineral Resource estimation,<br/>mining studies and metallurgical</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>Chip samples were routinely geologically logged. The<br/>drilling and sampling methods used were first-pass<br/>exploration methods and not intended to support<br/>Mineral Resource estimation.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                         | <ul> <li>studies.</li> <li>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</li> <li>The total length and percentage of the relevant intersections logged.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>Logging is qualitative in nature.</li> <li>All aircore samples were geologically logged.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Sub-sampling<br>techniques and<br>sample<br>preparation | <ul> <li>If core, whether cut or sawn and<br/>whether quarter, half or all core<br/>taken.</li> <li>If non-core, whether riffled, tube<br/>sampled, rotary split, etc and<br/>whether sampled wet or dry.</li> <li>For all sample types, the nature,<br/>quality and appropriateness of the<br/>sample preparation technique.</li> <li>Quality control procedures adopted<br/>for all sub-sampling stages to<br/>maximise representivity of samples.</li> <li>Measures taken to ensure that the<br/>sampling is representative of the in<br/>situ material collected, including for<br/>instance results for field<br/>duplicate/second-half sampling.</li> <li>Whether sample sizes are<br/>appropriate to the grain size of the<br/>material being sampled.</li> </ul> | <ul> <li>Aircore samples were recovered from the drill hole via a cyclone at 1 metre intervals. Each 1 metre sample was placed in a plastic bag on the ground in sequence. A hollow PVC spear is used to obtain a sub-sample through each 1 metre interval; these are combined for submission as a 2.5kg 4 metre composite sample. Wet samples are recorded if present, in this program samples generally remained dry until the last 10m in some deeper holes.</li> <li>All samples for assay are stored in pre-numbered bags and submitted to Bureau Veritas Laboratories for sample preparation and analysis.</li> <li>Sample preparation for drill samples involved drying the whole sample, crushing to 3mm and pulverising to 90% passing -75 microns. The pulverised sample was split with a rotary sample divider to obtain a 40 gram charge. Duplicate field samples and laboratory repeats show satisfactory reproducibility.</li> </ul> |
| Quality of<br>assay data and<br>laboratory tests        | <ul> <li>The nature, quality and<br/>appropriateness of the assaying and<br/>laboratory procedures used and<br/>whether the technique is considered<br/>partial or total.</li> <li>For geophysical tools,<br/>spectrometers, handheld XRF<br/>instruments, etc, the parameters<br/>used in determining the analysis<br/>including instrument make and<br/>model, reading times, calibrations<br/>factors applied and their derivation,<br/>etc.</li> <li>Nature of quality control procedures<br/>adopted (eg standards, blanks,<br/>duplicates, external laboratory<br/>checks) and whether acceptable<br/>levels of accuracy (ie lack of bias)<br/>and precision have been established.</li> </ul>                                                                     | <ul> <li>where mineral grainsize is unknown.</li> <li>A nominal 40 gram charge is digested with aqua regia and gold is determined by ICP-MS, the detection limit is 1ppb. This is a partial digest for base metal and refractory elements, although it is extremely efficient for the extraction of gold. S was analysed from the aqua regia solution by ICP-AES.</li> <li>No geophysical tools were used to determine any element concentrations.</li> <li>Laboratory QAQC includes the use of laboratory standards and replicates; Lodestar's certified reference standards and field duplicates were inserted at a ratio of 1:50 (2%) with each batch of samples. These quality control results are reported with the sample results in the final laboratory reports. Lodestar's certified reference standards ranging from blanks to ppm gold were inserted throughout the drilling program, accuracy is within acceptable limits.</li> </ul>  |

| Criteria                                                         | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                    | Commentary                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Verification of<br>sampling and<br>assaying                      | <ul> <li>The verification of significant<br/>intersections by either independent or<br/>alternative company personnel.</li> <li>The use of twinned holes.</li> <li>Documentation of primary data, data<br/>entry procedures, data verification, data<br/>storage (physical and electronic)<br/>protocols.</li> <li>Discuss any adjustment to assay data.</li> </ul>                                                                                      | <ul> <li>Significant intersections have not been independently validated at this time.</li> <li>No twinned holes have been completed.</li> <li>Field and laboratory data were collected electronically and entered into a relational database. Data collection protocols are recorded in Lodestar's operation manual.</li> <li>There has been no adjustment to assay data.</li> </ul>     |
| Location of data<br>points                                       | <ul> <li>Accuracy and quality of surveys used to<br/>locate drill holes (collar and down-hole<br/>surveys), trenches, mine workings and<br/>other locations used in Mineral Resource<br/>estimation.</li> <li>Specification of the grid system used.</li> <li>Quality and adequacy of topographic<br/>control.</li> </ul>                                                                                                                                | <ul> <li>Drill hole locations are fixed by handheld GPS, accuracy is estimated to be +/-5 metres.</li> <li>Drill hole coordinates were recorded in MGA94 Zone 50 grid.</li> <li>The topography within prospect areas is generally flat; RL's are averaged from GPS readings of individual drill holes in each area and individual elevations are subject to significant error.</li> </ul> |
| Data spacing<br>and distribution                                 | <ul> <li>Data spacing for reporting of Exploration<br/>Results.</li> <li>Whether the data spacing and<br/>distribution is sufficient to establish the<br/>degree of geological and grade continuity<br/>appropriate for the Mineral Resource and<br/>Ore Reserve estimation procedure(s) and<br/>classifications applied.</li> <li>Whether sample compositing has been</li> </ul>                                                                        | <ul> <li>Drill holes have variable spacing, generally 40 metres on section and ranging from 80 to 320 metres between sections.</li> <li>The data is insufficient to establish continuity for Mineral Resource estimation.</li> <li>1 metre aircore samples have been composited to</li> </ul>                                                                                             |
| Orientation of<br>data in relation<br>to geological<br>structure | <ul> <li>Whether sumple compositing has been applied.</li> <li>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</li> <li>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</li> </ul> | <ul> <li>The aircore drilling method does not provide<br/>structural information and the orientation of the<br/>underlying geology has not been established. At<br/>Contessa and Brumby drill traverses are oriented<br/>perpendicular to the interpreted strike of a shear<br/>plane as determined from interpretation of<br/>aeromagnetic data.</li> </ul>                              |
| Sample security                                                  | • The measures taken to ensure sample security.                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>Samples were stored at Lodestar's exploration<br/>camp in sealed bags under supervision prior to<br/>dispatch by registered courier or Lodestar staff<br/>to Bureau Veritas Laboratories.</li> </ul>                                                                                                                                                                             |
| Audits or<br>reviews                                             | • The results of any audits or reviews of<br>sampling techniques and data.                                                                                                                                                                                                                                                                                                                                                                               | No audits or reviews have been carried out.                                                                                                                                                                                                                                                                                                                                               |

| Criteria                                                               | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral tenement and<br>land tenure status                             | • Contessa is located on E52/2456, within Lodestar's Ned's Creek project. The tenement is held by Audacious Resources, a wholly-owned subsidiary of Lodestar Minerals and expires on 16/09/2020. The tenement is within the native title claim WC99/46 of the Yugunga-Nya Group. Lodestar has signed a Heritage Agreement with the traditional owners to carry out mineral exploration on the tenement.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Exploration done by<br>other parties                                   | <ul> <li>Exploration commenced at McDonald Well in the late 1960's, WMC explored for<br/>Zambian Copper Belt style mineralisation and completed regional geological mapping<br/>and sampling, followed by minor percussion drilling. CRA Exploration completed<br/>regional mapping and auger sampling, also at McDonald Well. No significant<br/>anomalies were identified on the tenements. Minor exploration drilling by Barrick<br/>and CRA Exploration east and south of Contessa intersected ultramafic lithologies,<br/>confirming the extent of the greenstone sequence in this area. There has been no<br/>material exploration by other parties over the Contessa area.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Geology                                                                | The geology of the project area comprises the northern margin of the Proterozoic Yerrida Basin. The geology forms two discrete units; Proterozoic sediments of the Yerrida Basin that are prospective for sediment-hosted copper and base metal mineralisation in black shale and carbonate sequences, with evidence of secondary and primary copper mineralisation in the Thaduna district and Archaean basement rocks on the northern margin of the Yerrida Basin. The basement-sediment contact trends east-west and Lodestar's exploration has identified extensive gold anomalism adjacent to this contact. The basement consists of granite and fringing mafic to intermediate and ultramafic rocks that are not widely exposed at surface. The maficultramafic rocks and the adjacent granite that hosts gold mineralisation are thought to be Archaean in age but may be part of the Glenburgh orogenic event along the norther Yilgarn margin. Identification of syenite-hosted, intrusion-related gold mineralisation at Brumby indicates that this region differs in comparison with other lode gold occurrences in the Plutonic Well greenstone belt and the surrounding Proterozoic fold belt and does not form part of the adjacent Marymia Inlier. |
| Drill hole information                                                 | Tabulated data is provided in Tables 1 and 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Data aggregation<br>methods                                            | <ul> <li>Assay data are reported as 4 metre composite samples and reported aggregated intercepts<br/>are length weighted. No cutting of high grades, intersections have been calculated using a<br/>0.1g/t lower cut-off.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Relationship between<br>mineralisation widths<br>and intercept lengths | • Generally vertical holes were drilled where there is uncertainty as to the orientation of mineralisation. At Brumby some traverses were drilled at -60 degrees orthogonal to the expected trend of mineralisation, based on interpretation of aeromagnetic data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Diagrams                                                               | • See Figures 2 to 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Balanced reporting                                                     | All drill holes and intercepts are reported in Tables 1 and 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Other substantive exploration data                                     | None to report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Further Work                                                           | <ul> <li>Extensive zones of anomalous gold greater than 100ppb (0.1g/t) have been identified in drilling at prospects on the margin of the Contessa granite. The anomalies remain open at depth and along strike along the granite contact. In-fill drilling at Contessa has extended a zone of supergene gold mineralisation in several areas where low grade mineralisation persists into the transition zone below supergene mineralisation intersected by recent aircore drilling.</li> <li>A new zone of mineralisation has been identified at Brumby, where aircore holes targeted the western contact of a syenite intrusion. This drilling has successfully demonstrated "proof of concept" for the syenite intrusion-related gold model that identifies the structurally-modified contact zones of the intrusion as a potentially attractive exploration target. Further drilling is required to systematically test this margin.</li> </ul>                                                                                                                                                                                                                                                                                                             |