Lodestar Minerals LimitedABN 32 127Level 2, 55 Carrington StreetPO Box 985Nedlands WA 6009Nedlands WTel: +61 8 9423 3200Fax: +61 8 9

ABN 32 127 026 528 PO Box 985 Nedlands WA 6909 Fax: +61 8 9389 8327

ASX ANNOUNCEMENT

14th March 2017

COMPANY SNAPSHOT

LODESTAR MINERALS LIMITEDABN:32 127 026 528

CONTACT DETAILS Bill Clayton, Managing Director +61 8 9423 3200

Registered and Principal Office Level 2, 55 Carrington Street Nedlands, WA 6009

PO Box 985 Nedlands, WA, 6909

info@lodestarminerals.com.au

www.lodestarminerals.com.au

CAPITAL STRUCTURE


Shares on Issue: 453,318,328 (LSR)

Options on Issue: 45,333,702 (listed) 41,050,127 (unlisted)

ASX: LSR

PROJECTS

Peak Hill – Doolgunna region: Camel Hills – gold Ned's Creek – gold Marymia – gold West Pinnyriny – gold

Electronic lodgement

REGIONAL GOLD POTENTIAL SIGNIFICANTLY ENHANCED THROUGH FARM-IN AGREEMENT ADJACENT TO NED'S CREEK

- Strategic farm-in to Vango Mining's tenements immediately north of Lodestar's Contessa and Brumby discoveries at Ned's Creek.
- Lodestar to earn up to 80% of Vango's Yowereena project by meeting minimum expenditure requirements for 12 months while Vango focuses on the development of its K2 gold deposit.
- Agreement further consolidates the key Jenkin Fault structure in an emerging gold region with considerable untested potential.
- High priority historic gold targets at Boundary Fence prospect and numerous untested anomalies from reconnaissance drilling.
- Proposed \$1.2 million funding facility from Lodestar Chairman Ross Taylor to fund extensive, high-impact regional drill programs commencing in April.

West Australian gold explorer Lodestar Minerals Limited ("Lodestar" or "the Company") (ASX: LSR) is pleased to advise that it has entered into a farm-in agreement (the "Agreement") with Vango Mining Limited ("Vango") (ASX: VAN) over the Yowereena tenements ("Yowereena"). Yowereena is located on four granted Mining Leases immediately north of the Contessa and Brumby prospects on Lodestar's 100% owned Ned's Creek project (see Figures 1 and 3).

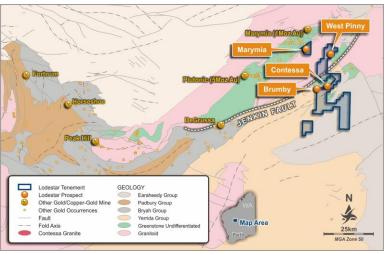


Figure 1: Ned's Creek project, showing prospect locations.

Lodestar's work program at Ned's Creek over the past 12 months has been focused on the Contessa and Brumby gold discoveries and recent results have resulted in the generation of a new geological model. This model indicates the potential for two forms of gold mineralisation within Ned's Creek: higher-grade, diorite and syenite-hosted mineralisation associated with the Contessa granite contact and lower-grade, syenite-hosted mineralisation within the granite structure (see Figure 2). Drilling at Contessa has encountered widespread and significant supergene gold mineralisation in shallow zones and the most recent round of aircore drilling, which intersected anomalous gold in the deeper transition zone (see Lodestar's ASX announcement dated 1st December 2016), suggests a primary source is located nearby.

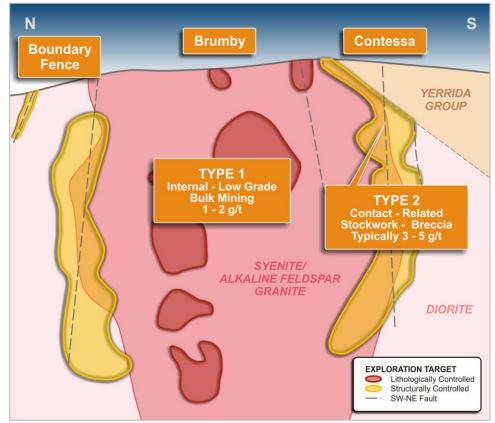


Figure 2: Ned's Creek geological model showing two types of regional gold mineralisation targets.

The Agreement to farm-in to Yowereena will more than double Lodestar's exploration foothold over the Contessa granite from 7 kilometres to 15 kilometres. Lodestar believes the consolidation of this emerging gold target through the Agreement is strategically important and will capitalise on the Company's geological understanding of intrusion-related gold in the region. The Agreement requires only relatively minimal financial commitments in the next 12 months (A\$357,000) and Yowereena's existence on four granted Mining Leases will facilitate an expedited development pathway in the event of a future gold discovery.

Commenting on the Agreement, Lodestar Managing Director Bill Clayton said:

"Lodestar's systematic exploration of the Ned's Creek project has confirmed we are working with a large, mineralised gold system so the ability to secure a controlling position in the interpreted northern extension of the key geological structure makes considerable commercial sense. "We will continue to build on the work we have done at Ned's Creek in the past four years and apply this knowledge to Yowereena where, together, we see great potential for a larger regional gold play.

"The strong support of this strategy demonstrated by a proposed \$1.2 million financing facility from Chairman and major shareholder Ross Taylor is another important indication of the confidence Lodestar has in its prospective ground position and we look forward to our next drill program in the June quarter."

Yowereena has a number of attractive walk-up, drill ready gold targets. Lodestar's exploration along the southern and western granite contacts is on-going and it is anticipated that additional gold targets will be identified on the northern sheared granite margin within Vango's Yowereena tenements as exploration progresses.

Yowereena Project

The Yowereena project covers 35.7km² on four granted Mining Leases (MLs 52/779, 52/780, 52/781 and 52/782) in the Peak Hill Mineral Field of Western Australia. The southern boundary of the project area abuts the northern boundary of Lodestar's Ned's Creek project (see Figure 3).

The Yowereena area includes a sequence of Archaean supracrustal rocks, including mafic and ultramafic schists, felsic schists and cherts that form part of an extensive belt of deformation associated with the Jenkin Fault, on the southern margin of the Marymia Inlier.

Work completed by Vango and previous explorers at Yowereena has identified a number of high priority gold targets within the project area. Exploration commenced in 1992 to 1993, resulting in the discovery of the Boundary Fence gold prospect. This early work concluded 20 years ago in 1997 with a single phase of RC drilling at Boundary Fence. Between 2000 and 2001, Homestake completed reconnaissance RAB drilling and shallow geochemical drilling to test areas beneath transported cover. Although this work identified a number of significant gold anomalies there has been no follow-up drilling since 2001 and the northern contact of the Contessa granite is completely untested.

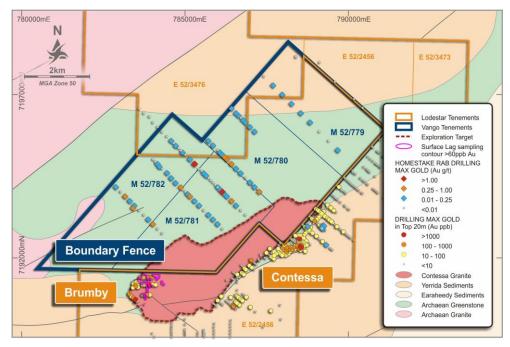


Figure 3: Vango Mining's Yowereena tenements showing the Boundary Fence prospect, Homestake RAB drilling, Lodestar's gold anomalies shown on the southern margin of the Contessa granite and Lodestar's surrounding tenements.

Contessa Granite

One of the key attractions of the Yowereena project area is the northern contact of the Contessa granite which is interpreted to extend from Lodestar's Ned's Creek area into the Vango ground. This northern contact has not been tested for the intrusion-related style of gold mineralisation discovered at Contessa and Brumby. The composition and structural setting of the northern contact is believed to be similar to the southern contact and furthermore is not concealed beneath Proterozoic sedimentary rocks, making it more accessible for surface exploration and drilling. The surface gold anomalies defined by Lodestar at Brumby are interpreted to continue up to Lodestar's tenement boundary, demonstrating that the fertile hydrothermal system extends north along the western granite contact.

Boundary Fence

The Boundary Fence prospect is a 500m long gold in soil anomaly with numerous significant gold drill intersections. RAB drilling completed in 1994 tested the soil anomaly and reported supergene intersections of greater than 1g/t gold¹. The drill intersections listed below are taken from historic company reports (see Table 1 and Figures 3 & 4). These results have not been reported under JORC 2012 reporting standards and cannot be confirmed, but are intended to demonstrate the area's prospectivity.

- 13m at 10.52g/t Au from 45m in YHR-54 (down hole lengths, true thickness not known)
- 7m at 2.08g/t Au from 8m in YHR-61
- 7m at 2.42g/t Au from 29m in YHR-63

The 500m long anomaly, believed to be related to an outcropping quartz reef, was tested by six widespaced RC drill holes targeting a shallow-dipping mineralised lode². Drilling did not confirm the previously interpreted shallow dip to the mineralisation but did report significant additional gold intercepts within the anomaly that remains largely untested below the depth of oxidation. The RC drilling was completed in 1997 and there has been no further work over the prospect.

<u>Homestake</u>

Regional reconnaissance RAB and aircore drilling conducted by Homestake Gold in 2000 encountered anomalous gold across a number of areas. These anomalies have not been followed up. The drilling was conducted by Homestake on traverses spaced 800m and up to 1,400m apart to test areas under shallow transported cover. A number of anomalous intersections (>0.1g/t Au) were reported, up to a maximum 4m at 1.139g/t Au from 76m in YHRB0009³.

¹ See Yowereena Hill project E52/527 (Sector B) Annual Report for 1993 submitted by Marymia Exploration NL. Western Australia Department of Mines and Petroleum open file report no. A41787 and Yowereena Hill joint venture E52/527 (Sector B) Annual Report for 1994 submitted by Marymia Exploration NL. Western Australia Department of Mines and Petroleum open file report no. A41789.

² See Yowereena Hill joint venture E52/527 (Sector B) Annual Report for 1997 submitted by Marymia Exploration NL. Western Australia Department of Mines and Petroleum open file report no. A51536.

³ See Annual Report, Technical Report No. 996 for 2000 submitted by Homestake Gold of Australia Limited. Western Australia Department of Mines and Petroleum open file report no. A62465.

Key Terms of the Agreement

The Agreement between Lodestar and Vango contains the following key terms:

- Lodestar to earn an 80% interest in the tenements by sole-funding the minimum total annual expenditure on all tenements (a total of \$357,000, as listed in Appendix 1) within a 12 month period.
- Tenements to be in good standing.
- Lodestar may withdraw from the Agreement during the 12-month earn-in period and will retain no interest in the tenements.
- Following the earn-in period, Vango has the right to claw back up to a 30% participating interest in the tenements by repaying to Lodestar:
 - An amount equal to the percentage advised in the claw back notice multiplied by the higher of the deemed independent market value of the tenements as at the end of the earn in period and the amount expended by Lodestar in earning its initial interest.
- Once Lodestar has satisfied its earn-in obligations, Vango may elect to contribute on a pro-rata basis or dilute their interest according to the standard industry formula.

The farm-in agreement will strongly enhance the gold potential of Lodestar's Neds Creek project and with the recently announced \$1.2M funding facility⁴, the Company is well placed to exploit these multiple new discovery opportunities.

Bill Clayton Managing Director Media Enquiries Michael Vaughan, Fivemark Partners michael.vaughan@fivemark.com.au M: +61 422 602 720

⁴ See Lodestar's ASX announcement dated 10 March 2017.

Competent Person Statement

The information in this report that relates to Exploration Results is based on information compiled by Bill Clayton, Managing Director, who is a Member of the Australasian Institute of Geoscientists and has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Clayton consents to the inclusion in this report of the matters based on the information in the form and context in which it appears.

The information in this announcement that relates to previously released exploration results was disclosed under JORC 2012 in the ASX announcement dated 1st December 2016 "Contessa – Brumby Aircore Drilling Results". This announcement is available to view on the Lodestar website. The company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement. The company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

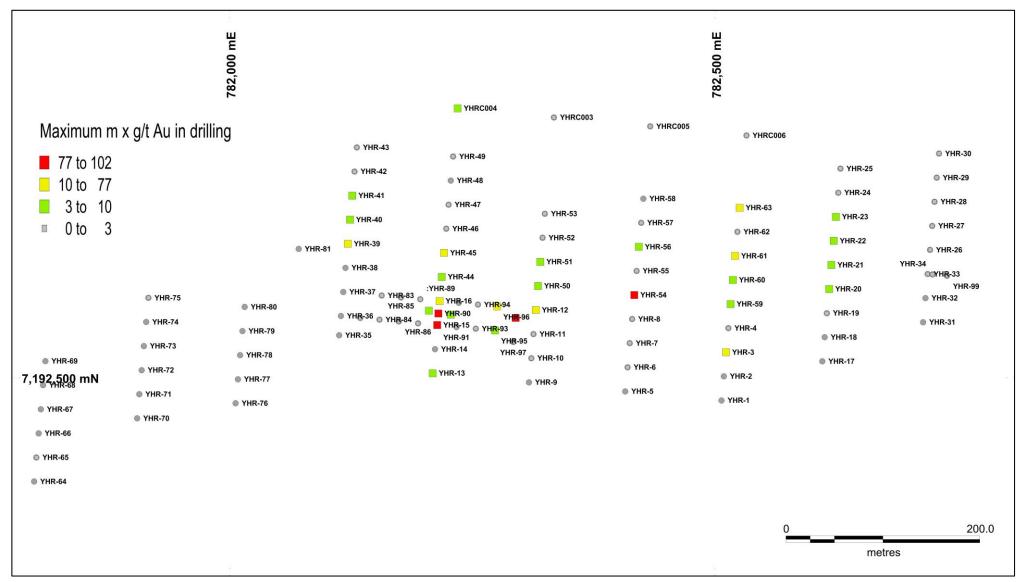


Figure 4 Boundary Fence prospect drill collar plan showing historic intersections as metres x g/t gold (GDA94 Zone 50, re-projected from local grid).

Table 1 Historic drilling - summary of significant intercepts >0.1g/t Au (GDA94 coordinates re-projected from local grid - subject to error, nominal RL's used).

HoleID	LocalN	LocalE	NorthGDA ¹	EastGDA ¹	RL	Dip	Azimuth	Total Depth	From	То	Thickness (m)	Grade (g/t Au)
YHR-1	10750	13200	7192477	782506	600	-60	180	60				nsi
YHR-2	10775	13200	7192502	782509	600	-60	180	55				nsi
YHR-3	10800	13200	7192526	782511	600	-60	180	64	0	4	4	0.130
									4	8	4	2.900
YHR-4	10825	13200	7192551	782513	600	-60	180	74	4	8	4	0.300
									20	24	4	0.185
									68	72	4	0.115
YHR-5	10750	13100	7192486	782407	600	-60	180	56				nsi
YHR-6	10775	13100	7192511	782410	600	-60	180	72	0	4	4	0.280
YHR-7	10800	13100	7192536	782412	600	-60	180	69	12	28	16	0.171
YHR-8	10825	13100	7192560	782414	600	-60	180	51	20	28	8	0.187
	10750	40000			600		100		36	48	12	0.215
YHR-9	10750	13000	7192495	782308	600	-60	180	77				nsi
YHR-10	10775	13000	7192520	782310	600	-60	180	58	0	4	4	0.220
YHR-11	10800	13000	7192545	782313	600	-60	180	66	8 64	12	4	0.710
YHR-12	10825	13000	7102570	702215	600	-60	180	72	64 4	66 32	2 28	0.120 0.375
YHR-12 YHR-13	12900	10750	7192570 7192505	782315 782209	600	-00	100	61	4 16	20	4	1.02
YHR-13	12900	12900		782209	600		180	65	10	20	4	nsi
YHR-14	10773	12900	7192530 7192554	782211	600	-60	180	52	0	12	12	8.470
1111-13	10800	12900	/192554	/02214	000	-00	100	52	12	16	4	0.220
YHR-16	10825	12900	7192579	782216	600	-60	180	56	8	32	24	0.507
	10025	12500	1152515	702210	000	00	100	50	12	20	8	1.16
YHR-17	10800	13300	7192517	782610	600	-60	180	65				nsi
YHR-18	10825	13300	7192542	782612	600	-60	180	64				nsi
YHR-19	10850	13300	7192567	782615	600	-60	180	70	4	20	16	0.25
									64	68	4	0.34
YHR-20	10875	13300	7192591	782617	600	-60	180	66	0	24	24	0.36
									12	16	4	1.23
									32	36	4	0.18
									56	64	8	0.99
									56	60	4	1.89
YHR-21	10900	13300	7192616	782619	600	-60	180	67	0	24	24	0.33
									8	12	4	0.78
YHR-22	10925	13300	7192641	782622	600	-60	180	70	28	36	8	0.46
									32	36	4	0.62
									48	52	4	0.18
	10055	40055							64	68	4	0.1
YHR-23	10950	13300	7192666	782624	600	-60	180	71	32	40	8	0.34
									44	48	4	0.15
	10075	12200	7400004	702626	600		100	74	52	68	16	0.33
YHR-24	10975	13300	7192691	782626	600	-60	180	71	28	32 52	4	0.19
									44 68	52 71	8	0.11 0.11
:									DŎ	/1	3	0.11

HoleID	LocalN	LocalE	NorthGDA ¹	EastGDA ¹	RL	Dip	Azimuth	Total Depth	From	То	Thickness (m)	Grade (g/t Au)
YHR-25	11000	13300	7192715	782629	600	-60	180	71	28	32	4	0.10
									56	60	4	0.13
									64	68	4	0.12
YHR-26	10925	13400	7192632	782721	600	-60	180	59	0	4	4	0.3
									8	12	4	0.17
									20	24	4	0.15
									28	32	4	0.28
YHR-27	10950	13400	7102050	702722	600	-60	180	64	48 4	56 8	8	0.11 0.13
			7192656	782723				-	4 24			
YHR-28	10975	13400	7192681	782726	600	-60	180	66	24 64	28 66	4 2	0.60 0.16
YHR-29	11000	13400	7192706	782728	600	-60	180	69	36	48	12	0.10
YHR-30	11000	13400		782728	600	-60	180	60	48	48 60	12	0.23
YHR-31	1025	13400	7192731 7192557	782730	600	-60	180	67	40	00	12	nsi
YHR-31	10850	13400	7192582	782714	600	-60	180	66				nsi
YHR-32	10875	13400	7192582	782716	600	-60	180	29	16	29	13	0.30
1111-33	10500	13400	/19200/	/02/19	000	-00	100	29	24	29	5	0.50
YHR-34	10900	13405	7192606	782724	600	-60	180	27	16	27	11	0.13
YHR-35	10780	12800	7192500	782113	600	-60	180	72	10	27		nsi
YHR-36	10800	12800	7192564	782113	600	-60	180	66				nsi
YHR-37	10825	12800	7192588	782114	600	-60	180	64				nsi
YHR-38	10850	12800	7192613	782117	600	-60	180	64				nsi
YHR-39	10875	12800	7192638	782113	600	-60	180	72	0	4	4	0.16
11111 000	10075	12000	/152050	/02121	000	00	100	, -	20	40	20	0.90
									20	24	4	3.23
YHR-40	10900	12800	7192663	782124	600	-60	180	63	24	40	16	0.37
									28	32	4	0.63
YHR-41	10925	12800	7192688	782126	600	-60	180	78	28	32	4	0.10
									36	40	4	1.23
									44	78	34	0.240
YHR-42	10950	12800	7192712	782128	600	-60	180	67	40	44	4	0.14
									60	67	7	0.18
YHR-43	10975	12800	7192737	782131	600	-60	180	78	48	52	4	0.13
									64	72	8	0.16
YUR-44	10850	12900	7192604	782218	600	-60	180	64	20	36	16	0.41
									40	44	4	0.26
YHR-45	10875	12900	7192629	782221	600	-60	180	63	32	63	31	0.38
YHR-46	10900	12900	7192653	782223	600	-60	180	69	16	20	4	0.18
									64	69	5	0.15
YHR-47	10925	12900	7192678	782225	600	-60	180	76	28	32	4	0.15
									72	76	4	0.17
YHR-48	10950	12900	7192703	782228	600	-60	180	65				nsi
YHR-49	10975	12900	7192728	782230	600	-60	180	62	56	62	6	0.38
YHR-50	10850	13000	7192595	782317	600	-60	180	60	28	40	12	0.40
									44	56	12	0.16
YHR-51	10875	13000	7192619	782320	600	-60	180	63	16	20	4	0.15

HoleID	LocalN	LocalE	NorthGDA ¹	EastGDA ¹	RL	Dip	Azimuth	Total Depth	From	То	Thickness (m)	Grade (g/t Au)
									24	28	4	0.15
									36	60	24	0.21
									40	44	4	0.5
YHR-52	10900	13000	7192644	782322	600	-60	180	72	16	24	8	0.14
									28	32	4	0.48
									40	52	12	0.15
									56	64	8	0.11
YHR-53	10925	13000	7192669	782324	600	-60	180	68	32	40	8	0.12
YHR-54	10850	13100	7192585	782417	600	-60	180	66	0	24	24	1.21
									16	24	8	6.02
									28	36	8	0.44
									32	36	4	0.67
									40	65	25	3.65
									44	48	4	22.2
	10075	40400			600		100		44	56	12	8.18
YHR-55	10875	13100	7192610	782419	600	-60	180	75	24	28	4	0.19
									32	36	4	0.33
									44	48	4	0.11
	10000	12100	7402025	702424	600	60	100	77	64	68	4	0.27
YHR-56	10900	13100	7192635	782421	600	-60	180	77	52	78	26	0.16
YHR-57	10925	13100	7192660	782424	600	-60	180	66	56	60	4	0.48
YHR-58 YHR-59	10950	13100	7192684	782426	600	-60	180	69 79	10	24	8	nsi
100-29	10850	13200	7192576	782516	600	-60	180	78	16 28	24 36	8	0.24 0.80
									28	32	4	1.28
YHR-60	10875	13200	7192601	782518	600	-60	180	84	12	24	12	0.24
1111-00	10075	15200	/192001	/02310	000	-00	100	04	44	48	4	0.24
									52	40 64	12	0.27
									68	80	12	0.11
YHR-61	10900	13200	7192625	782520	600	-60	180	84	0	16	16	1.33
	20000	10100	/152025	702320			100	0.	8	16	8	2.55
									28	32	4	0.25
									36	40	4	0.24
									56	60	4	0.12
									64	68	4	0.10
YHR-62	10925	13200	7192650	782523	600	-60	180	84	0	4	4	0.12
									8	16	8	0.10
									20	24	4	0.15
YHR-63	10950	13200	7192675	782525	600	-60	180	84	24	28	4	1.00
									32	36	4	4.9
									52	84	32	0.50
									52	68	16	0.71
									56	60	4	1.36
YHR-64	10600	12500	7192393	781798	600	-60	180	57				nsi
YHR-65	10625	12500	7192418	781801	600	-60	180	60	44	48	4	0.15
YHR-66	10650	12500	7192443	781803	600	-60	180	71				nsi

HoleID	LocalN	LocalE	NorthGDA ¹	EastGDA ¹	RL	Dip	Azimuth	Total Depth	From	То	Thickness (m)	Grade (g/t Au)
YHR-67	10675	12500	7192468	781805	600	-60	180	71				nsi
YHR-68	10700	12500	7192492	781808	600	-60	180	84				nsi
YHR-69	10725	12500	7192517	781810	600	-60	180	68				nsi
YHR-70	10675	12600	7192458	781905	600	-60	180	77				nsi
YHR-71	10700	12600	7192483	781907	600	-60	180	56				nsi
YHR-72	10725	12600	7192508	781909	600	-60	180	60				nsi
YHR-73	10750	12600	7192533	781912	600	-60	180	71				nsi
YHR-74	10775	12600	7192557	781914	600	-60	180	84				nsi
YHR-75	10800	12600	7192582	781916	600	-60	180	84	12 24	20 28	8 4	0.15 0.16
YHR-76	10700	12700	7192474	782006	600	-60	180	57				nsi
YHR-77	10725	12700	7192499	782008	600	-60	180	66				nsi
YHR-78	10750	12700	7192523	782011	600	-60	180	56				nsi
YHR-79	10775	12700	7192548	782013	600	-60	180	62				nsi
YHR-80	10800	12700	7192573	782015	600	-60	180	62			0	nsi
YHR-81	10865	12750	7192633	782071	600	-60	180	57			0	nsi
YHR-82	10800	12820	7192562	782134	600	-60	180	51	20	24	4	0.33
YHR-83	10825	12840	7192585	782156	600	-60	180	51	12	16	4	0.17
									28	32	4	0.11
YHR-84	10800	12840	7192560	782154	600	-60	180	50	24	28	4	0.22
YHR-85	10825	12840	7192585	782156	600	-60	180	50	28	32	4	0.11
YHR-86	10800	12860	7192558	782174	600	-60	180	50	20	28	8	0.22
YHR-87	10825	12860	7192583	782176	600	-60	180	50	12	28	16	0.18
YHR-88	10800	12880	7192556	782194	600	-60	180	50	0	4	4	0.23
[:] YHR-89	10825	12000	7102501	702406	600	60	190	50	16 0	20	4	0.11
100-09	10825	12880	7192581	782196	600	-60	180	50	16	4 28	4 12	0.10 0.20
YHR-90	10812	12900	7192566	782215	600	-60	180	50	4	28	24	3.21
1111 30	10012	12500	7152500	702215	000	00	100	50	4	20	16	4.72
									12	16	4	14.5
YHR-91	10800	12920	7192552	782233	600	-60	180	50	0	4	4	0.22
									20	24	4	0.14
YHR-92	10825	12920	7192577	782236	600	-60	180	50				nsi
YHR-93	10800	12940	7192551	782253	600	-60	180	50	8	16	8	0.13
YHR-94	10825	12940	7192575	782256	600	-60	180	50	12	28	16	0.17
YHR-95	10800	12960	7192549	782273	600	-60	180	50	0	12	12	0.33
									4	8	4	0.60
									16	20	4	0.30
YHR-96	10825	12960	7192573	782275	600	-60	180	50	4	28	24	0.92
									12	20	8	2.33
									16	20	4	3.95
YHR-97	10790	12980	7192537	782292	600	-60	180	50	0	4	4	0.52
YHR-98	10815	12980	7192562	782294	600	-60	180	50	0	28	28	2.96
									4	16	12	6.3
YHR-99	10900	13420	7192605	782738	600	-60	180	68	4 20	12 24	8	9.04 0.13

HoleID	LocalN	LocalE	NorthGDA ¹	EastGDA ¹	RL	Dip	Azimuth	Total Depth	From	То	Thickness (m)	Grade (g/t Au)
									40	44	4	0.45
YHRC001	10814	12890	7192569	782205	600	-60	180	69	0	4	4	0.222
									4	8	4	1.393
									8	12	4	0.236
									12	16	4	0.376
YHRC002	10812	12913	7192565	782228	600	-60	180	69	0	4	4	0.03
									4	8	4	0.194
									8	12	4	0.911
									12	16	4	0.125
YHRC003	11025	13000	7192768	782334	600	-60	180	171	125	126	1	0.296
									126	127	1	0.318
									127	128	1	0.224
									143	145	2	0.287
		10000						100	149	151	2	0.322
YHRC004	11025	12900	7192777	782235	600	-60	180	182	88	92	4	0.188
									100	104	4	1.22
	11005	42400			600	60		450	136	140	4	0.251
YHRC005	11025	13100	7192759	782433	600	-60	180	159	148	150	2	0.236
YHRC006	11025	13200	7192749	782532		-60	180	197	72	76	4	0.504
									84	88	4	0.292
									104	108	4	0.534
									108	112	4	0.447
YHAC0001			788394	7198139	520	-90	0	62				nsi
YHAC0002			791056	7196108	520	-90	0	71				nsi
YHAC0003			789394	7195578	520	-90	0	77				nsi
YHAC0004			789111	7195861	520	-90	0	63				nsi
YHAC0005			788828		520	-90	0	81				nsi
YHAC0006			788545	7196426	520	-90	0	67				nsi
YHAC0007			789676	7195295	520	-90	0	104				nsi
YHAC0008			786006	7194157	520	-90	0	97				nsi
YHAC0009			786070	7194093	520	-90	0	104				nsi
YHAC0010			786212	7193951	520	-90	0	77				nsi
YHAC0011			785929	7194234	520	-90	0	104				nsi
YHAC0012			785787	7194376	520	-90	0	104				nsi
YHAC0013			784875	7194157	520	-90	0	65	37	39	2	0.138
									50	51	1	0.108
									53	55	2	0.327
									60	61 65	1	0.117 0.107
			704020	7104002	E 20	00	0	<u>ر -</u>	64	65	1	0.107 nsi
YHAC0014 YHAC0015			784939	7194093 7194022	520	-90 -90	0	65 86				nsi
			785009 784879		520 520	-90 -90	0	63				nsi
YHAC0016				7195284				56				nsi
YHAC0017			784928	7195221	520	-90	0	56				nsi
YHAC0018			785009	7195154	520	-90 -90	0	52 44				nsi
YHAC0019 YHAC0020			785151 785292	7195012 7194871	520 520	-90 -90	0	44 77	49	51	2	0.75
10020			/85292	/1948/1	520	-90	U	//	49	51	2	0.75

HoleID	LocalN	LocalE	NorthGDA ¹	EastGDA ¹	RL	Dip	Azimuth	Total Depth	From	То	Thickness (m)	Grade (g/t Au)
YHAC0021			785423	7194719	520	-90	0	34				nsi
YHAC0022			785504	7194659	520	-90	0	43				nsi
YHAC0023			785575	7194588	520	-90	0	51				nsi
YHAC0024			785646	7194517	520	-90	0	79				nsi
YHAC0025			785717	7194446	520	-90	0	72				nsi
YHAC0026			786996	7194298	520	-90	0	107	88	92	4	0.118
YHAC0027			786848	7194446	520	-90	0	95				nsi
YHAC0028			786706	7194588	520	-90	0	53				nsi
YHAC0029			786565	7194729	520	-90	0	89				nsi
YHAC0030			786424	7194871	520	-90	0	113	36 58	40 59	4 1	0.26 0.316
YHAC0031			786282	7195012	520	-90	0	92	78	79	1	0.364
YHAC0032			786212	7195083	520	-90	0	84	75	76	1	0.283
YHAC0033			786141	7195154	520	-90	0	43				nsi
YHAC0034			787131	7195861	520	-90	0	64				nsi
YHAC0035			786989	7196002	520	-90	0	60				nsi
YHAC0036			786848	7196144	520	-90	0	53				nsi
YHAC0037			786777	7196214	520	-90	0	61				nsi
YHAC0038			786706	7196285	520	-90	0	54				nsi
YHAC0039			786636	7196356	520	-90	0	45				nsi
YHAC0040			786565	7196426	520	-90	0	51				nsi
YHAC0041			786424	7196568	520	-90	0	57				nsi
YHAC0042			787414	7197558	520	-90	0	55				nsi
YHAC0043			787696	7197275	520	-90	0	55	48	55	7	0.19
YHAC0044			787979	7196992	520	-90	0	64				nsi
YHAC0045			788262	7196709	520	-90	0	74				nsi
YHAC0046			785434	7193598	520	-90	0	90				nsi
YHAC0047			785575	7193456	520	-90	0	56				nsi
YHAC0048			785717	7193315	520	-90	0	56	52	53	1	0.152
YHAC0049			785858	7193174	520	-90	0	55				nsi
YHAC0050			785999	7193032	520	-90	0	26				nsi
YHAC0051			786141	7192891	520	-90	0	26				nsi
YHAC0052			783411	7193524	520	-90	0	58	20 36	22 40	2 4	0.218 0.1
YHAC0053			789323	7192396	520	-90	0	63	-	-		nsi
YHRB0001			785084	7193948	520	-90	0	85				nsi
YHRB0002			785151	7193881	520	-90	0	77	48	51	3	0.244
YHRB0003			785292	7193739	520	-90	0	75	_			nsi
YHRB0004			786848	7193315	520	-90	0	41				nsi
YHRB0005			786706	7193456	520	-90	0	46				nsi
YHRB0006			786565	7193598	520	-90	0	49				nsi
YHRB0007			786424	7193739	520	-90	0	76	72	74	2	0.13
YHRB0008			786282	7193881	520	-90	0	67				nsi
YHRB0009			786141	7194022	520	-90	0	88	76	80	4	1.139
YHRB0010			785999	7194164	520	-90	0	91				nsi

HoleID	LocalN	LocalE	NorthGDA ¹	EastGDA ¹	RL	Dip	Azimuth	Total Depth	From	То	Thickness (m)	Grade (g/t Au)
YHRB0011			785858	7194305	520	-90	0	100				nsi
YHRB0012			787272	7194022	520	-90	0	69	52	56	4	1.105
YHRB0013			787131	7194164	520	-90	0	88				nsi
YHRB0014			786989	7194305	520	-90	0	68				nsi
YHRB0015			785717	7195578	520	-90	0	47				nsi
YHRB0016			785858	7195436	520	-90	0	53				nsi
YHRB0017			785999	7195295	520	-90	0	50				nsi
YHRB0018			786070	7195224	520	-90	0	64				nsi
YHRB0019			786141	7195154	520	-90	0	33				nsi
YHRB0020			783595	7193456	520	-90	0	39				nsi
YHRB0021			783737	7193315	520	-90	0	56				nsi
YHRB0022			783878	7193174	520	-90	0	61				nsi
YHRB0023			784019	7193032	520	-90	0	64	25	32	7	0.215
YHRB0024			784161	7192891	520	-90	0	40				nsi
YHRB0025			784302	7192749	520	-90	0	61				nsi
YHRB0035			783454	7193598	520	-90	0	49				nsi
YHRB0036			783312	7193739	520	-90	0	51				nsi
YHRB0037			783171	7193881	520	-90	0	51	44	48	4	0.207
YHRB0038			783029	7194022	520	-90	0	48				nsi
YHRB0039			782888	7194164	520	-90	0	56				nsi
YHRB0052			783595	7196568	520	-90	0	32				nsi
YHRB0053			783737	7196426	520	-90	0	40				nsi
YHRB0054			783913	7196320	520	-90	0	37				nsi
YHRB0055			784019	7196144	520	-90	0	25				nsi
YHRB0056			784161	7196002	520	-90	0	39				nsi
YHRB0057			784295	7195854	520	-90	0	34				nsi
YHRB0058			784444	7195719	520	-90	0	37				nsi
YHRB0059			784585	7195578	520	-90	0	45				nsi
YHRB0060			784656	7195507	520	-90	0	48				nsi
YHRB0061			784720	7195429	520	-90	0	36				nsi
YHRB0062			784801	7195362	520	-90	0	61				nsi
YHRB0063			784868	7195288	520	-90	0	58				nsi
YHRB0064			784019	7195012	520	-90	0	44				nsi
YHRB0065			784090	7194941	520	-90	0	31				nsi
YHRB0066			784161	7194871	520	-90	0	48				nsi
YHRB0067			784221	7194789	520	-90	0	50				nsi
YHRB0068			784302	7194729	520	-90	0	37				nsi
YHRB0069			784451	7194595	520	-90	0	52				nsi
YHRB0070			784578	7194439	520	-90	0	48				nsi
YHRB0071			784712	7194291	520	-90	0	70				nsi
YHRB0072			788757	7192961	520	-90	0	57				nsi
YHRB0073			790434	7196588	520	-90	0	26				nsi
YHRB0074			790176	7196861	520	-90	0	29				nsi
YHRB0075			789586	7197386	520	-90	0	19				nsi
YHRB0076			789116	7197984	520	-90	0	34				nsi

HoleID	LocalN	LocalE	NorthGDA ¹	EastGDA ¹	RL	Dip	Azimuth	Total Depth	From	То	Thickness (m)	Grade (g/t Au)
YHRB0077			788394	7198164	520	-90	0	26				nsi
YR0001			789195	7192903	520	-90	0	70				nsi
YR0002			789213	7192886	520	-90	0	77				nsi
YR0003			789177	7192920	520	-90	0	57				nsi
YR0004			789238	7192998	520	-90	0	77				nsi
YR0005			789256	7192981	520	-90	0	80				nsi
YRA0001			789185	7192911	520	-90	0	73				nsi

¹Re-projected from local grid, subject to error. *nsi – no significant intersection*

APPENDIX 1

Tenement	Holder	Date Granted	Date of Expiry	Area	Minimum Expenditure
M52/779	Dampier 40%: Vango 60%	27/09/2013	26/09/2034	798ha	\$79,800
M52/780	Dampier 40%: Vango 60%	27/09/2013	26/09/2034	883ha	\$88,300
M52/781	Dampier 100%	31/12/2015	30/12/2036	937ha	\$93,700
M52/782	Dampier 100%	31/12/2015	30/12/2036	952ha	\$95,200

JORC Code, 2012 Edition

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
ampling echniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. 	 Marymia Exploration 1992 - 1997 Soil sampling – samples were collected on 400m by 100m grid from a pit dug 15cm into the soil and sieved to -80 mesh (180µm) sample size not reported. Detailed in-fi sampling was conducted on a 100m by 25r grid. The -80mesh sample was pulverized and a 30g charge was submitted for gold usin aqua regia digest with carbon rod/AAS finish. RAB drilling - drill samples were collected at 1m intervals and laid in sequence. 3k composite samples were subjected to a single stage mix and grind and analysed for gold baqua regia digest and carbon rod/AAS finish. RC drilling – sample collection method and sample size not reported. Samples were submitted as 4m composites, dried an pulverized and analysed for gold by aqui regia digest and carbon rod/AAS finish. Homestake Gold of Australia 2000 2001 RAB and aircore drilling – samples were collected at 1m intervals and laid out i sequence. 4m composite samples were collected by spear, sample size not reported. Samples were submitted for gold analysis b aqua regia digest with graphite furnace/AA finish. Cover-bedrock-interface (CBI) shallow RA drilling completed in 2001, targeting th interface between transported cover an underlying saprolite for geochemica sampling. 330 holes were completed on 160m by 160m grid. A single composit sample of 3m to 4m was taken across th interface.
	 Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. 	 Reporting of historic sampling and QAQC procedures is incomplete.
	 Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Marymia Exploration Soil samples were sent to Analab Laboratories where they were analysed b aqua regia digest for gold with AAS carbon rod finish using a 30g charge. RAB samples were sent to Analabs and analysed for gold by AAS with a carbon rod finish (1ppb Au detection limit). RC samples were sent to Analabs and analysed for gold by AAS with a carbon rod finish (1ppb Au detection limit). Homestake

Genalysis where they were analysed by B/ETA (50g charge, solvent extraction, graphite furnace AAS finish, 1ppb Au

		detection limit). Selected samples were analysed for Ag, As, Bi, Co, Pb, Sb, Te by ICP- MS and Cr, Cu, Fe, Mn, Ni, Zn by ICP-OES, from an aqua regia digest. CBI drill samples were submitted to Genalysis Laboratories and analysed for gold by B/ETA and Ag, As, Bi, Co, Cu, Cr, Fe, Mn, Ni, Pb, Sb, Te and Zn by AAS.
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Marymia Exploration RAB drilling – open hole blade bit, diameter not reported. RC drilling – bit type, sample collection method not reported. Homestake RAB/aircore drilling – open hole or aircore blade bit, 3" to 4.25" diameter.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to 	 Information on sample recoveries is incomplete. Sample recoveries are not reported (Marymia Exploration). Recoveries reported in digital logging (Homestake). Information on sampling methods is incomplete, the quality of the sampling is unknown. Information is incomplete and recoveries are not reported for
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support 	 mineralised samples. Historic samples have been logged during early stage, shallow exploration drilling –
	 appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections 	drilling is not intended to define a mineral resource.Qualitative logging.The total depth of the hole was logged.
Sub-sampling	logged. • If core, whether cut or sawn and whether quarter, half or all	 Not applicable, no diamond core was sampled.
techniques and sample preparation	 core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. 	 Samples were placed on the ground in sequence in 1m intervals. Composite samples were collected for assay using a spear (Homestake). Details of the nature and quality of other sampling are
	• For all sample types, the nature, quality and appropriateness of the sample preparation technique.	unknown. Marymia Exploration Dry and fine pulverize, other details unknown. Homestake Details unknown.
	 Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 The RAB, aircore and RC drilling presented in this report is historic, QAQC procedures were not reported. The RAB, aircore and RC drilling presented in this report is historic, QAQC procedures were not reported. The samples sizes, where known (Marymia Exploration RAB drilling), are believed to be appropriate for the material being sampled. Sample size is not known for Marymia Exploration RC drilling and Homestake RAB/aircore drilling.

Quality of assay data and laboratory tests	• The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	 All samples were sent to accredited laboratories of the time for sample analysis using standard methods and practices. Gold was determined by aqua regia digest and AAS which is an effective digest for gold in oxidised material encountered in shallow exploration drilling.
	 For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Geophysical methods were not used. QAQC procedures were not reported.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. 	 Historic data and significant intersections cannot be verified. Twinned holes were not completed, but follow-up RC drilling of shallow RAB intersections by Marymia Exploration reported low grade gold. Sampling and assay information is
	• Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	recorded on a paper logging system. RAB and RC drill logs with print-outs of analytical data are included in the Marymia Exploration reports. Homestake used an electronic logging and reporting system and the original assay reports have not been viewed.
	• Discuss any adjustment to assay data.	 No adjustments applied for this historic assay data.
Location of data points	• Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	 Marymia Exploration constructed a local grid. Grids were set up using a compass and Chainman, the first and last position on each line was fixed using a satellite navigation unit (Pronav GPS1000, in lat/long). If the line was greater than 2,000m a third GPS position was taken at the centre point of the line. Homestake used a hand-held GPS to position drill collars. Transformation from local to GDA94 using registered aerial photography and known drill collar positions.
	• Specification of the grid system used.	 Sample coordinates are in either local grid units (Marymia Exploration) or AGD84 Zone 50 grid (Homestake).
	• Quality and adequacy of topographic control.	 Local elevation is recorded from GPS or no at all. Subject to significant error.
Data spacing and distribution	• Data spacing for reporting of Exploration Results.	 Soil sample spacing varies from 400 metres by 100 metres to 100 metres by 25 metres. Marymia Exploration RAB drilling was completed on a 100m by 25m grid, closing to 20m by 25m in one area. Homestake RAB/aircore drilling was completed on traverses between 800m and 1400m apart with holes spaced at

		 Homestake BCI drilling was conducted on a 160m by 160m grid.
	• Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	 Data spacing and distribution is not sufficient for Mineral Resource estimation.
	• Whether sample compositing has been applied.	 Individual RAB, aircore and RC 1m samples were composited to nominal 4m intervals for assaying. Homestake CBI RAB 1m dril samples were composited to 3m to 4m samples for assay. Results in historic reporting are composited to intervals or >0.1g/t gold, the upper cut-off grade and internal waste parameters that were applied are not defined.
Orientation of data in relation to geological structure	• Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	 The orientation of possible mineralised structures is unknown, drilling was planned to intersect the prevailing foliation and layering (identified in geological mapping) in a perpendicular orientation.
	• If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	• The orientation of possible mineralised structures is unknown.
Sample security	• The measures taken to ensure sample security.	 There is no record of any sample security measures in the historic data.
Audits or Reviews	• The results of any audits or reviews of sampling techniques and data.	 No audits or reviews, other than checking historic drill logs and assays, have beer carried out and sampling techniques cannot be verified.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	• Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	 The tenements on which the historic exploration was completed and in which Lodestar is earning an 80% interest are held by Vango Mining Limited and Dampier (Plutonic) Pty Ltd. M52/779 expires on 26/09/2034 (VANGO 60/100:DAMPIER 40/100). M52/780 expires on 26/09/2034 (VANGO 60/100:DAMPIER 40/100). M52/781 expires on 30/12/2036 (DAMPIER 100/100). M52/782 expires on 30/12/2036 (DAMPIER 100/100).
		M52/779 and M52/780 are located within the Yugunga Nya people native title claim WAD6132/1998. M52/781 and M52/782 are located within the Yugunga Nya people native title claim WAD6132/1998 and the Gingirana claim WAD6002/2003.
	• The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	 M52/779 and M52/780 are subject to application for forfeiture 489020. All tenements are subject to registered mortgage 499547. No other impediments to operations have been identified.
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	• Gold exploration in the Plutonic Well greenstone belt commenced in 1986. Marymia Exploration, in their 1994 report, state that there had been little or no previous exploration within the tenements.
		Marymia Exploration carried out regional soil sampling and geological mapping. The soil sampling identified a modest gold anomaly, with a maximum of 15ppb gold related to an outcropping quartz reef. Rock chips recovered from the area reported up to 0.20g/t gold. The soil sampling was extended, reporting peak values of 115ppb and 920ppb gold. The peak anomalies correspond to a flexure along the quartz reef and a probable shear zone trending southwest-northeast to west-east. The anomaly extended over an area of 500m by 100m at >20ppb gold. The prospect is known as Boundary Fence. Marymia Exploration tested the anomaly with 99 RAB drill holes and 6 RC holes. RAB drilling reported significant results of >1g/t gold with possible supergene enrichment close to the surface. RC drill holes targeted near-surface high-grade mineralisation at shallow depth and 4 holes targeted the down-dip continuation of the mineralised zone, assuming a 30° northerly dip for the quartz veir system. Homestake Gold of Australia carried out regional drilling over a wide area to test the Archaean stratigraphy beneath shallow transported cover. 115 RAB and aircore holes were completed during this program, covering a strike distance of 7 kilometres. A follow-up program of shallow RAB drilling targeting the cover bedrock interface (CBI) for gold and multi-element geochemistry was completed in 2001. There has been no drilling since Homestake's program in 2001.

	mineralisation.	Marymia Inlier. This margin is part of a major break in structural domains, marked by the Jenkin Fault, where the Yilgarn Craton abuts the Marymia Inlier and has been reactivated throughout the Capricorn Orogen. Archaean rocks that are believed to underlie the Bryah and Yerrida Basins, are partly exposed and consist of interlayered mafic schists, felsic volcanic rocks, talc- chlorite schist and minor chert. The Archaean supracrustal sequence is concealed beneath the Yerrida Group to the south and east and truncated by the Marymia Inlier to the north. Gold has been discovered in the Contessa granite, a composite intrusion located in the southern part of the Archaean supracrustal sequence, indicating the potential for intrusion-related mineralisation within and on the margins of the granite. At Boundary Fence strong gold anomalism associated with an east-northeast trending shear zone also indicates potential for Archaean lode- style gold mineralisation within sheared and layered stratigraphy.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	• Tabulated data is provided in Table 1, attached.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	 Historic exploration drill data has been used, the application of maximum cut-off grades was not disclosed in the reports. Historic reports do not disclose the method used for calculating aggregate intercepts.
	 The assumptions used for any reporting of metal equivalent values should be clearly stated. 	Metal equivalent values not used.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Marymia Exploration based drill orientation on the geological mapping that identified a moderate to steep north to northwesterly dip of foliation at Boundary Fence. Holes were drilled towards grid south at a dip of -60 degrees to intersect the foliation at a close to orthogonal angle (true thickness). Mineralisation is discontinuous and mostly within the oxide zone, the attitude of any host unit has not been determined. Drilling completed by Homestake was drilled vertically for geochemical sampling purposes.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for	 Plans showing drill sites and significant results are included in the report.

	any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	• All relevant sample data is reported in Table 1.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	None to report.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Numerous gold targets requiring further mapping sampling and drilling have been identified from historic work. Testing potential strike and depth extensions to mineralisation and anomalies will require follow-up exploration drilling.