

OUTSTANDING RC DRILL RESULTS AT GIDGEE FLAT AND CONTESSA

HIGHLIGHTS

- Latest high-grade gold results demonstrate the growing potential of the Ned's Creek project.
- Strongest ever drill result returned at Contessa from large deformation zone in bedrock which extends well beyond current RC drilling.
 - 4m at 74.0g/t Au from 140m (LNRC026)
 - 4m at 5.6g/t Au from 170m (LNRC043)
 - 4m at 2.5g/t Au from 139m (LNRC027)
- Final six RC holes at the Gidgee Flat discovery returned the highest grade results to date:
 - o 2m at 8.3g/t Au from 174m and
 - 11m at 5.8g/t Au from 195m (LNRC039)
 - o 5m at 3.4g/t Au from 154m (LNRC036)
 - 1m at 10.7g/t Au from 203m, 3m at 3.0g/t Au from 215m and 1m at 7.2g/t Au from 248m (LNRC040)
- Gidgee Flat drilling has now confirmed mineralisation extending over an area of 120m by 100m and remains open in all directions.
- First systematic RC drill program indicates the tenor of mineralisation is improving at depth and has confirmed Lodestar's intrusion-related gold model.
- Aircore drilling is underway to extend coverage of prospective granite contact where gold mineralisation is hosted in north-dipping shear zones.
- Exploration of the Neds Creek gold terrane lags 30 years behind the adjacent Plutonic Well greenstone belt and offers excellent exploration upside.

West Australian gold explorer Lodestar Minerals Limited ("Lodestar" or "the Company", ASX:LSR) advises that final assay results for the 23 hole, 4,240m RC drilling program completed at the Contessa and Gidgee Flat gold discoveries have been received. Contessa and Gidgee Flat are located within the Company's 100%-owned Neds Creek project, north of Meekatharra, Western Australia (see Figure 1) and 35km east of Superior Gold's 5Moz Plutonic gold mine.

At Gidgee Flat 11 RC holes were completed for 1,969m of drilling. Drill holes LNRC035 to LNRC040 targeted the down-dip extension to gold mineralisation reported in aircore drilling and RC drill holes LNRC030 to LNRC034 (see Lodestar's ASX announcements dated 27th December 2017, 30th April 2018 and 9th May 2018).

Drilling was completed on four traverses spaced at 25m with holes at 50m spacing on sections. Down dip intercepts are between 40m and 60m apart. RC drilling has tested the contact over a distance of 100m. All holes intersected shear-related and/or syenite-host gold mineralisation and the system remains open along strike and at depth.

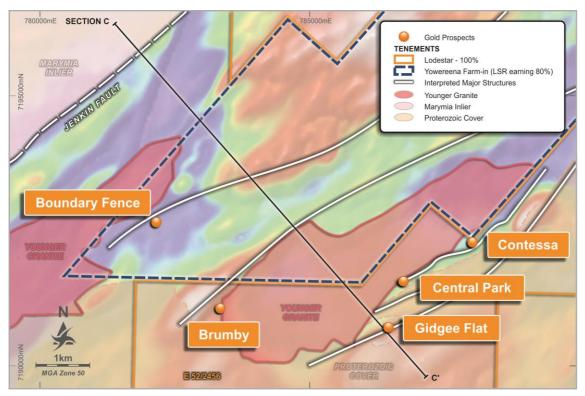


Figure 1 Prospect location plan showing Gidgee Flat, Contessa and granite intrusive.

The latest RC drill results confirm that gold mineralisation extends to depth, reporting the highest gold grades to date from Gidgee Flat. The mineralisation occurs within a series of moderately to steeply north-dipping shear zones adjacent to the granite contact. The shear zones display silica-sericite-pyrite, carbonate, haematite-magnetite and epidote alteration and are interspersed with syenite intrusives that also contain gold-bearing pyrite mineralisation. There is a close association between shear-hosted gold mineralisation and undeformed mineralised syenite intrusions as dykes and apophyses, a setting that confirms the intrusion-related style of gold mineralisation proposed for the Ned's Creek district (see Figures 2 to 4).

Hole LNRC039 reported high-grade gold intercepts from 195m, 80m below the gold mineralisation intersected in aircore drilling in December 2017. Reporting 11m at 5.8g/t Au and including a maximum of 28.5g/t Au from 202m, LNRC039 demonstrates the strong potential for economic gold mineralisation at not only the Gidgee Flat discovery, but within the wider Ned's Creek terrane. It is an emphatic demonstration of the potential for high grade gold associated with the intrusion-related style of mineralisation being sought by Lodestar and has been achieved in only the second phase of drilling at Gidgee Flat.

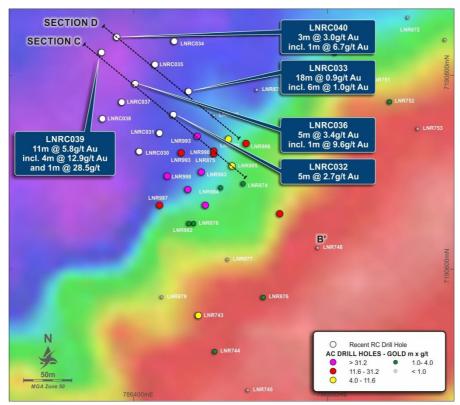


Figure 2 Gidgee Flat drill collar plan, showing drill section location. Background aeromagnetic image.

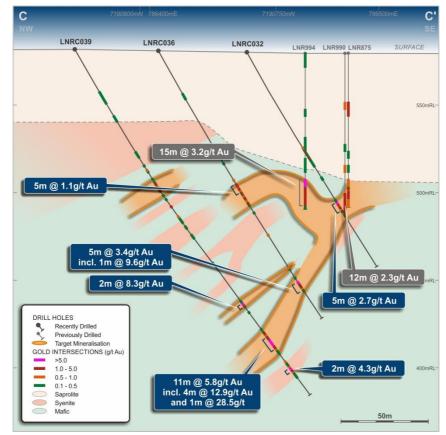


Figure 3 Gidgee Flat drill cross section C-C' showing mineralisation and granite contact.

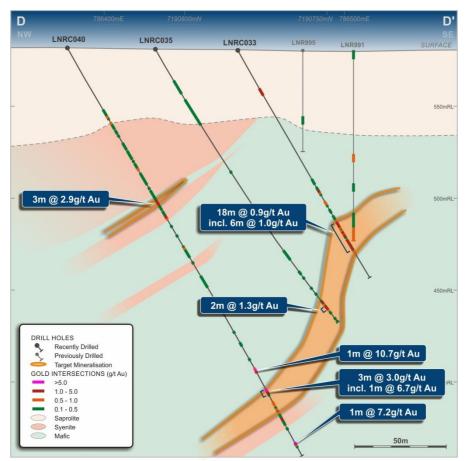


Figure 4 Gidgee Flat drill cross-section D-D' showing mineralisation and granite contact.

Significant assay results (>1g/t Au) from Gidgee Flat are listed in Table 1.

Table 1 Gidgee Flat - significant assay results >1g/t Au.

Hole_ID	Easting	Northing	RL	TotalDepth	DrillType	Dip	Azimuth	DepthFrom	DepthTo	Length	Au g/t
LNRC035	786422	7190811	581	179	RC	-60.6	133.1	165	166	1	1.23
LNRC035								168	169	1	1.4
LNRC035								169	170	1	1.23
LNRC036	786402	7190791	581	179	RC	-60.8	132.8	88	89	1	1.16
LNRC036								89	90	1	1.86
LNRC036								91	92	1	1.11
LNRC036								94	95	1	1.4
LNRC036								97	98	1	1.47
LNRC036								101	102	1	1.12
LNRC036								154	155	1	9.64
LNRC036								155	156	1	4.66
LNRC036								157	158	1	2.01
LNRC037	786388	7190772	580.4	203	RC	-60.6	131.9	71	72	1	1.26
LNRC037								75	76	1	1.65
LNRC037								78	79	1	1.09

Hole_ID	Easting	Northing	RL	TotalDepth	DrillType	Dip	Azimuth	DepthFrom	DepthTo	Length	Au g/t
LNRC037								80	81	1	1.18
LNRC037								81	82	1	3.84
LNRC037								122	123	1	3.93
LNRC037								134	135	1	1.39
LNRC037								178	179	1	2.6
LNRC038	786386	7190755	580.3	185	RC	-58.9	131.3	108	109	1	1.71
LNRC038								112	113	1	1.49
LNRC038								156	157	1	4.85
LNRC038								157	158	1	2.66
LNRC039	786367	7190823	581.8	239	RC	-59.9	130.2	89	90	1	1.07
LNRC039								94	95	1	1.13
LNRC039								105	106	1	1.36
LNRC039								174	175	1	15.4
LNRC039								175	176	1	1.21
LNRC039								195	196	1	1.17
LNRC039								198	199	1	1.3
LNRC039								199	200	1	3.76
LNRC039								200	201	1	5.82
LNRC039								201	202	1	8.94
LNRC039								202	203	1	28.5
LNRC039								203	204	1	8.52
LNRC039								204	205	1	3.3
LNRC039								205	206	1	1.91
LNRC039								220	221	1	6.05
LNRC039								221	222	1	2.64
LNRC040	786383	7190838	581.7	257	RC	-60.6	133.1	96	97	1	1.98
LNRC040								97	98	1	3.87
LNRC040								98	99	1	2.99
LNRC040								106	107	1	2.11
LNRC040								203	204	1	10.7
LNRC040								215	216	1	6.71
LNRC040								216	217	1	1.3
LNRC040								217	218	1	1.14
LNRC040								233	234	1	1.52
LNRC040								248	249	1	7.27

CONTESSA

Drilling at Contessa comprised 12 holes for 2,271m of RC drilling. The drilling was designed to target gold mineralisation intersected in diamond and RC drilling adjacent to the contact between diorite and quartz- sericite schist (see Lodestar's ASX announcement dated 8th December 2017). Drilling was completed on four traverses over a distance of 170m. The traverses are 40m apart with holes spaced at 50m on section.

The RC drilling confirmed both contact-related quartz vein hosted gold mineralisation and zones of silica-pyrite related gold mineralisation within extensive stacked, low angle structures at Contessa. Grades within the low angle structures are variable, but included extremely high grade gold in LNRC026 that reported 74g/t Au over 4m from 140m (see Figures 5 to 7). Significant assay results (>1g/t Au) from Contessa are listed in Table 2 and complete assay results >0.1g/t Au are listed in the Annexure.

Table 2 Contessa - Significant assay results >1g/t Au.

Hole_ID	Easting	Northing	RL	TotalDepth	DrillType	Dip	Azimuth	DepthFrom	DepthTo	Length	Au g/t
LNRC023	788027	7192407	574.38	203	RC	-60.3	128.5	179	180		1.01
LNRC024	787988	7192437	574.9	227	RC	-59.9	129.7	212	213		1.02
								225	226		1.64
LNRC026	788087	7192403	573.9	173	RC	-60.4	133.0	140	144		74.0
LNRC027	788062	7192372	574.01	164	RC	-60.8	131.1	92	93		1.01
								93	94		1.43
								139	140		5.11
								140	141		1.51
								141	142		2.46
								142	143		1.29
LNRC028	788008	7192313	574.11	131	RC	-60.0	130.4	60	64		3.68
								64	68		3.2
								76	77		2.62
								77	78		1.11
								112	113		1.17
								119	120		1.26
LNRC029	787968	7192347	574.74	131	RC	-60.2	132.9	111	112		2.65
LNRC041	787934	7192378	575.02	245	RC	-60.5	134.6	191	192		2.72
								195	196		1.21
LNRC042	787934	7192378	575.02	245	RC	-60.5	134.6	52	56		5.29
								84	88		1.7
								84	85		2.43
								85	86		1.73
								86	87		3.63
								87	88		2.27
								126	127		1.33
LNRC043	787946	7192315	574.6	191	RC	-60.6	131.8	170	171		3.65
								171	172		5.01
								172	173		5.97

Hole_ID	Easting	Northing	RL	TotalDepth	DrillType	Dip	Azimuth	DepthFrom	DepthTo	Length	Au g/t
								173	174		7.86
LNRC044	787906	7192346	574.7	239	RC	-60.9	130.3	162	163		2.5

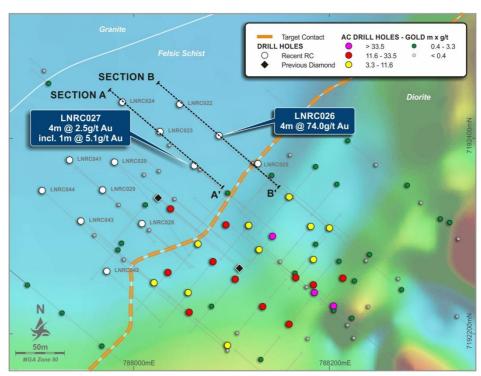


Figure 5 Contessa drill collar plan, showing drill section location. Background aeromagnetic image.

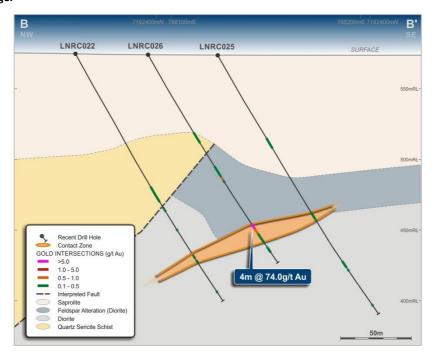


Figure 6 Contessa drill cross-section B-B' showing mineralisation and felsic-diorite contact.

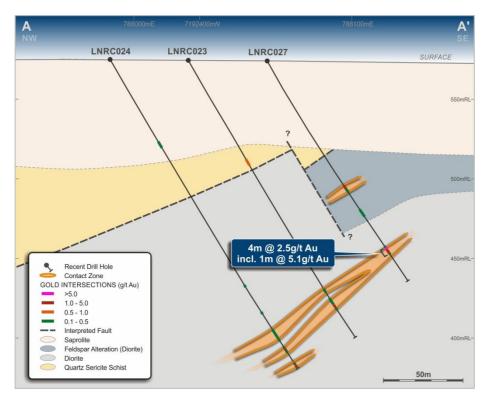


Figure 7 Contessa cross-section A-A' showing mineralisation and felsic-diorite contact.

RC drilling at Contessa has tested part of a major deformation zone located on the granite margin that has undergone intense silica alteration. Silica alteration has destroyed protolith textures and mineralogy within much of the Contessa shear zone and a detailed pXRF analysis of the RC drill holes will be carried out to reveal the relationship between mineralisation, host rocks and alteration.

The north-dipping shear zones hosting the Contessa mineralisation show a strong resemblance to the structural setting of the northern margin of the Plutonic Well Greenstone Belt (PWGB), suggesting that the episodes of deformation and mineralisation are related. The gold endowment of the adjacent PWGB (~10Moz Au) and evidence of extensive anomalies and high-grade gold at Contessa justify continued drill testing of the granite contact position.

CURRENT EXPLORATION

Aircore drilling is currently underway targeting the granite contact position at Central Park, Brumby and Gidgee Flat. At Gidgee Flat an initial traverse spacing of 160m was adopted to test the 800m strike of the contact surrounding the area of the RC drilling. The aircore program will be completed by the end of May with assay results expected approximately three weeks later.

A detailed aeromagnetic survey has been completed over the Yowereena farm-in tenements and surrounding Lodestar tenure, covering an area of 90km² with a 40m line spacing and 35m mean terrain clearance. The data will replace the existing 200m line spaced data and is currently being processed. Once interpreted, the aeromagnetic data will underpin the geological interpretation and targeting of the greenstone north of the Contessa granite.

NEXT STEPS

The excellent gold results from Gidgee Flat require immediate follow-up. Initially diamond drilling is planned to identify the key structural controls, followed by additional RC drilling to extend testing along strike. To date only 100m of the 800m of prospective granite contact has been drill tested so significant potential remains to extend gold mineralisation along strike, as well as at depth. These programs are in preparation and will commence once statutory approvals are in place.

Systematic drilling of the 2km of granite contact is required at Contessa. Along this contact the deformation zone is over a hundred metres wide and the granite contact has received minimal deeper drilling. It is also likely that in the areas where shallow aircore drilling has been completed, it has not effectively tested below the gold depletion zone, leaving significant potential at depth. Detailed analysis of results will be required to plan the next targets for drill testing within this extensive, mineralised system.

RC drill holes from Contessa and Gidgee Flat will be analysed with a pXRF. This detailed geochemical data combined with geological modelling will provide an augmented framework for planning additional drilling. Selected bulk samples will also be submitted for preliminary metallurgical test work to investigate gold recoveries and metal associations of the mineralisation.

Contacts

Bill Clayton

Managing Director info@lodestarminerals.com.au +61 8 9435 3200

Media enquiries

Michael Vaughan, Fivemark Partners michael.vaughan@fivemark.com.au +61 422 602 720

About Lodestar

Lodestar Minerals is an active Western Australian gold explorer with a prospective tenement package spanning more than 2,000km² at the edge of the Pilbara and Yilgarn Cratons. Lodestar has three main projects – Ned's Creek, Camel Hills and Imbin – and is also earning an 80% interest in Vango Mining's Yowereena gold project which is adjacent to Ned's Creek.

Lodestar's main focus is the Ned's Creek project (340km²) where it was first to identify the potential for syenite intrusion-related gold mineralisation within a craton margin setting and subsequently has made greenfields gold discoveries at the Contessa and Gidgee Flat prospects. Contessa is one of many partly explored gold anomalies located within a large shear zone developed along the southern margin of a 6 kilometre long, elongate composite granite intrusion. The Yowereena gold project provides Lodestar with access to the unexplored northern margin of the Contessa granite and under explored prospective Archaean greenstone terrane within a region of major gold endowment and production.

Competent Person Statement

The information in this report that relates to Exploration Results is based on information compiled by Bill Clayton, Managing Director, who is a Member of the Australasian Institute of Geoscientists and has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results,

Mineral Resources and Ore Reserves. Mr Clayton consents to the inclusion in this report of the matters based on the information in the form and context in which it appears.

The information in this announcement that relates to previously released exploration results was disclosed under JORC 2012 in the ASX announcements dated 8th December 2017 "Contessa – Final Diamond Drilling Results Support Expanded Drilling to Scope Resource Potential", 27th December 2017, "Confirmation of Major Gold System 35km from Plutonic Belt", 30th April 2018, March 2018 Quarterly Activities and Cash Flow Report" and 9th May 2018, "First RC Results from Gidgee Flat Extend Gold Discovery". These announcements are available to view on the Lodestar website. The company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement. The company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

ANNEXURE – Assay results >0.1g/t Au

Hole_ID	Easting	Northing	RL	TotalDepth	DrillType	Dip	Azimuth	DepthFrom	DepthTo	Length	Au g/t
LNRC023	788027	7192407	574.38	203	RC	-60.27	128.56	72	76	4	0.687
								166	167	1	0.95
								167	168	1	0.106
								168	169	1	0.112
								174	175	1	0.141
								175	176	1	0.111
								176	177	1	0.1
								177	178	1	0.218
								178	179	1	0.973
								179	180	1	1.01
								181	182	1	0.101
LNRC024	787988	7192437	574.9	227	RC	-59.88	129.68	60	64	4	0.302
								185	186	1	0.1
								198	199	1	0.133
								199	200	1	0.189
								200	201	1	0.164
								201	202	1	0.364
								202	203	1	0.107
								203	204	1	0.111
								204	205	1	0.592
								205	206	1	0.255
								211	212	1	0.294
								212	213	1	1.02
								213	214	1	0.423
								214	215	1	0.279
								222	223	1	0.793
								223	224	1	0.109
								224	225	1	0.929
								225	226	1	1.64
								226	227	1	0.237
LNRC025	788127	7192374	573.48	215	RC	-60.41	129.63	68	72	4	0.131
								72	76	4	0.189
								129	130	1	0.184
								130	131	1	0.253
								131	132	1	0.448
								132	133	1	0.204
								133	134	1	0.342
								135	136	1	0.242
								170	171	1	0.162
								171	172	1	0.273
								172	173	1	0.23
								173	174	1	0.131

Hole_ID	Easting	Northing	RL	TotalDepth	DrillType	Dip	Azimuth	DepthFrom	DepthTo	Length	Au g/t
								174	175	1	0.165
								177	178	1	0.104
								207	208	1	0.484
LNRC026	788087	7192403	573.9	173	RC	-60.38	133.04	64	68	4	0.132
								68	72	4	0.119
								92	96	4	0.193
								96	100	4	0.273
								101	102	1	0.839
								104	105	1	0.437
								140	144	4	74
								144	148	4	0.9
								148	152	4	0.472
								152	156	4	0.161
								160	164	4	0.119
LNRC027	788062	7192372	574.01	164	RC	-60.81	131.13	92	93	1	1.01
								93	94	1	1.43
								94	95	1	0.358
								95	96	1	0.309
								96	97	1	0.106
								110	111	1	0.255
								111	112	1	0.426
								112	113	1	0.448
								113	114	1	0.145
								114	115	1	0.132
								138	139	1	0.348
								139	140	1	5.11
								140	141	1	1.51
								141	142	1	2.46
								142	143	1	1.29
								143	144	1	0.119
LNRC028	788008	7192313	574.11	131	RC	-60.06	130.42	60	64	4	3.68
								64	68	4	3.2
								71	72	1	0.161
								73	74	1	0.388
								74	75	1	0.144
								75	76	1	0.262
								76	77	1	2.62
								77	78	1	1.11
								78	79	1	0.112
								80	84	4	0.176
								84	88	4	0.173
								88	92	4	0.178
								92	96	4	0.196
								100	104	4	0.284

Hole_ID	Easting	Northing	RL	TotalDepth	DrillType	Dip	Azimuth	DepthFrom	DepthTo	Length	Au g/t
								107	108	1	0.636
								108	109	1	0.394
								110	111	1	0.684
								111	112	1	0.569
								112	113	1	1.17
								113	114	1	0.45
								114	115	1	0.128
								119	120	1	1.26
LNRC029	787968	7192347	574.74	131	RC	-60.21	132.88	44	48	4	0.113
								88	92	4	0.114
								103	104	1	0.274
								104	105	1	0.21
								105	106	1	0.237
								107	108	1	0.645
								108	109	1	0.274
								109	110	1	0.316
								111	112	1	2.65
								112	113	1	0.402
								113	114	1	0.733
								114	115	1	0.642
								115	116	1	0.144
								123	124	1	0.156
								124	125	1	0.314
								125	126	1	0.482
LNRC035	786422	7190811	581	179	RC	-60.59	133.11	20	24	4	0.302
								24	28	4	0.139
								32	36	4	0.1
								36	40	4	0.172
								40	44	4	0.175
								44	48	4	0.215
								78	79	1	0.129
								114	115	1	0.152
								130	131	1	0.311
								131	132	1	0.199
								132	133	1	0.409
								133	134	1	0.124
								134	135	1	0.142
								135	136	1	0.136
								144	145	1	0.199
								145	146	1	0.133
								148	149	1	0.204
								155	156	1	0.335
								159	160	1	0.491
								164	165	1	0.202

Hole_ID	Easting	Northing	RL	TotalDepth	DrillType	Dip	Azimuth	DepthFrom	DepthTo	Length	Au g/t
								165	166	1	1.23
								166	167	1	0.865
								167	168	1	0.14
								168	169	1	1.4
								169	170	1	1.23
								170	171	1	0.706
								172	173	1	0.121
								176	177	1	0.118
								178	179	1	0.11
LNRC036	786402	7190791	580.92	179	RC	-60.85	132.82	28	32	4	0.162
								74	75	1	0.193
								85	86	1	0.757
								88	89	1	1.16
								89	90	1	1.86
								90	91	1	0.579
								91	92	1	1.11
								92	93	1	0.818
								93	94	1	0.498
								94	95	1	1.4
								95	96	1	0.396
								96	97	1	0.764
								97	98	1	1.47
								98	99	1	0.16
								99	100	1	0.632
								100	101	1	0.13
								101	102	1	1.12
								102	103	1	0.141
								107	108	1	0.103
								122	123	1	0.569
								144	145	1	0.55
								145	146	1	0.308
								151	152	1	0.113
								154	155	1	9.64
								155	156	1	4.66
								156	157	1	0.309
								157	158	1	2.01
								158	159	1	0.596
								159	160	1	0.161
								160	161	1	0.326
LNRC037	786388	7190772	580.49	203	RC	-60.66	131.87	40	44	4	0.111
								44	48	4	0.345
								64	65	1	0.277
								70	71	1	0.689
								71	72	1	1.26

Hole_ID	Easting	Northing	RL	TotalDepth	DrillType	Dip	Azimuth	DepthFrom	DepthTo	Length	Au g/t
								72	73	1	0.31
								73	74	1	0.128
								74	75	1	0.173
								75	76	1	1.65
								76	77	1	0.25
								77	78	1	0.723
								78	79	1	1.09
								79	80	1	0.102
								80	81	1	1.18
								81	82	1	3.84
								82	83	1	0.17
								89	90	1	0.294
								99	100	1	0.407
								101	102	1	0.438
								105	106	1	0.721
								121	122	1	0.499
								122	123	1	3.93
								127	128	1	0.22
								132	133	1	0.156
								133	134	1	0.109
								134	135	1	1.39
								135	136	1	0.138
								136	137	1	0.213
								178	179	1	2.6
								193	194	1	0.299
LNRC038	786368	7190755	580.36	185	RC	-58.92	131.36	8	12	4	0.248
								28	32	4	0.483
								32	36	4	0.3
								36	40	4	0.249
								40	44	4	0.194
								44	48	4	0.154
								48	52	4	0.105
								52	56	4	0.568
								56	60	4	0.176
								65	66	1	0.147
								67	68	1	0.878
								68	69	1	0.117
								71	72	1	0.189
								81	82	1	0.139
								83	84	1	0.178
								84	85	1	0.753
								85	86	1	0.845
								86	87	1	0.871
								87	88	1	0.707

Hole_ID	Easting	Northing	RL	TotalDepth	DrillType	Dip	Azimuth	DepthFrom	DepthTo	Length	Au g/t
								88	89	1	0.131
								90	91	1	0.149
								108	109	1	1.71
								111	112	1	0.161
								112	113	1	1.49
								113	114	1	0.269
								114	115	1	0.704
								156	157	1	4.85
								157	158	1	2.66
								158	159	1	0.187
								159	160	1	0.104
								160	161	1	0.238
LNRC039	786367	7190823	581.77	239	RC	-59.96	130.25	28	32	4	0.154
								32	36	4	0.133
								44	48	4	0.124
								68	72	4	0.135
								77	78	1	0.13
								80	81	1	0.877
								81	82	1	0.12
								86	87	1	0.135
								88	89	1	0.306
								89	90	1	1.07
								90	91	1	0.107
								91	92	1	0.789
								92	93	1	0.162
								93	94	1	0.617
								94	95	1	1.13
								97	98	1	0.104
								100	101	1	0.201
								105	106	1	1.36
								112	113	1	0.814
								113	114	1	0.187
								114	115	1	0.316
								115	116	1	0.494
								116	117	1	0.18
								119	120	1	0.101
								120	121	1	0.112
								125	126	1	0.308
								126	127	1	0.183
								127	128	1	0.151
								145	146	1	0.285
								172	173	1	0.136
								173	174	1	0.119
								174	175	1	15.4

Hole_ID	Easting	Northing	RL	TotalDepth	DrillType	Dip	Azimuth	DepthFrom	DepthTo	Length	Au g/t
								175	176	1	1.21
								176	177	1	0.112
								180	181	1	0.131
								192	193	1	0.151
								194	195	1	0.178
								195	196	1	1.17
								196	197	1	0.829
								197	198	1	0.156
								198	199	1	1.3
								199	200	1	3.76
								200	201	1	5.82
								201	202	1	8.94
								202	203	1	28.5
								203	204	1	8.52
								204	205	1	3.3
								205	206	1	1.91
								206	207	1	0.626
								207	208	1	0.228
								208	209	1	0.355
								209	210	1	0.101
								215	216	1	0.767
								216	217	1	0.165
								217	218	1	0.22
								218	219	1	0.353
								219	220	1	0.97
								220	221	1	6.05
								221	222	1	2.64
								222	223	1	0.613
								223	224	1	0.185
								224	225	1	0.179
								225	226	1	0.105
								226	227	1	0.163
LNRC040	786383	7190838	581.7	257	RC	-60.66	133.08	39	42	3	0.111
								42	43	1	0.251
								43	44	1	0.608
								44	45	1	0.106
								47	48	1	0.732
								48	49	1	0.182
								49	50	1	0.29
								50	51	1	0.179
								52	53	1	0.119
								53	54	1	0.14
								55	56	1	0.115
								60	61	1	0.19

Hole_ID	Easting	Northing	RL	TotalDepth	DrillType	Dip	Azimuth	DepthFrom	DepthTo	Length	Au g/t
								61	62	1	0.108
								62	63	1	0.312
								63	64	1	0.154
								65	66	1	0.148
								66	67	1	0.14
								67	68	1	0.102
								68	69	1	0.227
								69	70	1	0.154
								71	72	1	0.123
								73	74	1	0.117
								74	75	1	0.203
								75	76	1	0.121
								76	77	1	0.533
								79	80	1	0.104
								80	81	1	0.125
								81	82	1	0.231
								82	83	1	0.157
								83	84	1	0.133
								84	85	1	0.119
								85	86	1	0.416
								88	89	1	0.217
								90	91	1	0.176
								91	92	1	0.155
								92	93	1	0.133
								93	94	1	0.438
								94	95	1	0.153
								95	96	1	0.23
								96	97	1	1.98
								97	98	1	3.87
								98	99	1	2.99
								99	100	1	0.31
								100	101	1	0.176
								101	102	1	0.21
								103	104	1	0.277
								104	105	1	0.139
								105	106	1	0.324
								106	107	1	2.11
								107	108	1	0.847
								112	113	1	0.113
								118	119	1	0.435
								125	126	1	0.253
								126	127	1	0.722
								127	128	1	0.295
								128	129	1	0.372

Hole_ID	Easting	Northing	RL	TotalDepth	DrillType	Dip	Azimuth	DepthFrom	DepthTo	Length	Au g/t
								129	130	1	0.189
								130	131	1	0.212
								131	132	1	0.121
								135	136	1	0.114
								144	145	1	0.144
								145	146	1	0.406
								146	147	1	0.426
								147	148	1	0.427
								148	149	1	0.179
								149	150	1	0.252
								150	151	1	0.146
								179	180	1	0.274
								186	187	1	0.107
								187	188	1	0.183
								196	197	1	0.248
								202	203	1	0.723
								203	204	1	10.7
								204	205	1	0.574
								215	216	1	6.71
								216	217	1	1.3
								217	218	1	1.14
								218	219	1	0.34
								223	224	1	0.99
								224	225	1	0.726
								226	227	1	0.499
								227	228	1	0.917
								228	229	1	0.187
								229	230	1	0.972
								230	231	1	0.453
								231	232	1	0.346
								232	233	1	0.319
								233	234	1	1.52
								234	235	1	0.384
								235	236	1	0.277
								236	237	1	0.144
								239	240	1	0.114
								248	249	1	7.27
								249	250	1	0.757
								250	251	1	0.161
LNRC041	787934	7192378	575.02	245	RC	-60.54	134.58	110	111	1	0.152
								111	112	1	0.141
								114	115	1	0.688
								115	116	1	0.536
								116	117	1	0.24

Hole_ID	Easting	Northing	RL	TotalDepth	DrillType	Dip	Azimuth	DepthFrom	DepthTo	Length	Au g/t
								117	118	1	0.496
								120	121	1	0.134
								124	125	1	0.119
								152	153	1	0.109
								153	154	1	0.252
								154	155	1	0.166
								158	159	1	0.172
								164	165	1	0.1
								167	168	1	0.125
								168	169	1	0.277
								169	170	1	0.639
								170	171	1	0.439
								172	173	1	0.123
								191	192	1	2.72
								192	193	1	0.373
								193	194	1	0.13
								194	195	1	0.402
								195	196	1	1.21
								196	197	1	0.22
								197	198	1	0.148
								214	215	1	0.216
LNRC042	787934	7192378	575.02	245	RC	-60.54	134.58	52	56	4	5.29
								56	60	4	0.622
								72	76	4	0.126
								76	80	4	0.421
								80	84	4	0.5
								80	81	1	0.395
								81	82	1	0.304
								82	83	1	0.958
								83	84	1	0.733
								84	88	4	1.7
								84	85	1	2.43
								85	86	1	1.73
								86	87	1	3.63
								87	88	1	2.27
								88	92	4	0.519
								88	89	1	0.595
								89	90	1	0.267
								90	91	1	0.239
								91	92	1	0.99
									93	1	0.458
								92	96	4	0.489
								93	94	1	0.44
								94	95	1	0.255

Hole_ID	Easting	Northing	RL	TotalDepth	DrillType	Dip	Azimuth	DepthFrom	DepthTo	Length	Au g/t
								95	96	1	0.187
								96	97	1	0.199
								97	98	1	0.106
								98	99	1	0.19
								100	101	1	0.16
								116	117	1	0.315
								117	118	1	0.358
								121	122	1	0.334
								122	123	1	0.201
								124	125	1	0.319
								125	126	1	0.32
								126	127	1	1.33
								127	128	1	0.218
								128	129	1	0.1
								135	136	1	0.258
								137	138	1	0.196
								140	141	1	0.145
LNRC043	787946	7192315	574.6	191	RC	-60.63	131.76	56	60	4	0.873
								60	64	4	0.804
								64	68	4	0.102
								68	72	4	0.156
								80	84	4	0.112
								92	96	4	0.562
								96	100	4	0.748
								107	110	3	0.588
								117	118	1	0.22
								118	119	1	0.69
								119	120	1	0.139
								120	121	1	0.137
								122	123	1	0.244
								123	124	1	0.54
								124	125	1	0.721
								148	149	1	0.458
								149	150	1	0.178
								150	151	1	0.183
								152	153	1	0.369
								153	154	1	0.734
								161	162	1	0.237
								168	169	1	0.63
								169	170	1	0.426
								170	171	1	3.65
								171	172	1	5.01
								172	173	1	5.97
								173	174	1	7.86

Hole_ID	Easting	Northing	RL	TotalDepth	DrillType	Dip	Azimuth	DepthFrom	DepthTo	Length	Au g/t
								174	175	1	0.146
								186	187	1	0.162
LNRC044	787906	7192346	574.7	239	RC	-60.87	130.31	68	72	4	0.163
								124	125	1	0.119
								126	127	1	0.217
								127	128	1	0.297
								162	163	1	2.5

JORC Code, 2012 Edition

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 RC drill holes were sampled at 1m intervals throughout, with 4m composites also collected through weathered or less altered material. Samples collected from the cyclone were laid in plastic bags in sequence on the ground in rows of 20. Sample representivity is maintained by placing the samples in a pre-numbered calico bag with a corresponding sample book entry. Certified reference materials, field duplicates and laboratory repeat samples are analysed routinely. 1m RC samples were collected as a 2.5kg split in calico bags attached to the on-board cone splitter. Composite 4m metre samples were collected by spearing down the side of the plastic bag using a PVC spear and combined to create a 2.5 to 3.0kg composite sample. The samples were submitted to a commercial laboratory for drying, crushing, and pulverising to produce a 40g charge for fire assay of gold and determination of sulphur by LECO furnace.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 RC drilling using a 5.5" face sampling hammer. RC holes were surveyed with a REFLEX EZ-GYRO north-seeking gyro survey tool.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Sample recoveries and wet samples were monitored and recorded qualitatively in Lodestar's drill hole database. Recoveries were generally 80 -100% and approximately 1% were reported as wet samples. High pressure air used to maintain a dry sample and drill sampling equipment was cleaned regularly to minimise contamination. No relationship between sample recovery and grade has been established.

Criteria	JORC Code explanation	Commentary
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Chip samples were routinely geologically logged throughout the hole. Logging is qualitative in nature. All RC holes are geologically logged in full.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 No core samples taken. Individual 1m split samples collected from the cone splitter are submitted for assay. Most samples were dry. Selected intervals were composited from bagged 1m samples to produce a 2.5kg 4m composite using a PVC spear. All samples for assay are stored in prenumbered bags and submitted to Bureau Veritas Laboratories for sample preparation and analysis. Sample preparation for drill samples involves drying the whole sample, crushing to 3mm and pulverising to 90% passing -75 microns. The pulverised sample was split with a rotary sample divider to obtain a 40 gram charge. Duplicate field samples (1:25), certified reference standards (1:20) and laboratory repeats are used to monitor satisfactory reproducibility. Sample size is appropriate for early exploration drilling where mineral grainsize is unknown.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Following sample preparation a 40 gram charge was submitted for fire assay (with ICP-AES finish); the detection limit is 1ppb. 1:20 duplicate samples retained for analysis after fine crushing. 1:20 pulverised samples analysed for satisfactory grind size. The fire assay method is considered an estimation of total gold content. No geophysical tools were used to determine any element concentrations. Laboratory QAQC includes the use of laboratory standards and replicates; Preliminary review of Lodestar's reference standards and field duplicates indicate acceptable accuracy and precision.

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying Location of data	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. Accuracy and quality of surveys used to locate drill holes (collar and down). 	 Significant intersections have not been independently validated at this time. No twinned holes have been completed for Lodestar drilling. Field and laboratory data are collected electronically and entered into a relational database. Data collection protocols are recorded in Lodestar's operation manual. There has been no adjustment to assay data. Drill hole locations are fixed by handheld GPS, assurance is estimated to be 1/5 metros.
points	to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	 accuracy is estimated to be +/-5 metres. Drill hole coordinates were recorded in MGA94 Zone 50 grid. The topography within prospect areas is generally flat; RL's are averaged from GPS readings of individual drill holes in each area and are subject to significant error. In the Contessa and Gidgee Flat areas drill hole collar RL's have been adjusted to the DEM surface derived from a detailed aeromagnetic survey using Bendix/King radar altimeter equipment with a resolution of 0.3m.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. 	 Drill holes at Contessa were placed at a nominal hole spacing of 50m (north-south) and 40m (east-west) and at Gidgee Flat 50m (north-south) and 30m (east-west). The drilling subject of this announcement has not been used to prepare Mineral Resource estimates at this stage.
	 Whether sample compositing has been applied. 	Compositing has been applied for the RC samples.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 At Gidgee Flat the target mineralisation is believed to dip towards the north, the dip has not been verified by diamond drilling. RC holes are oriented perpendicular to the regional strike of stratigraphy. At Contessa the target mineralisation is also believed to dip towards the north based on limited diamond drilling and a marker graphitic shear. No orientation based sampling bias has been identified in the data.
Sample security	 The measures taken to ensure sample security. 	 Samples were stored at Lodestar's exploration camp in sealed bags under supervision prior to dispatch by Lodestar contractors and registered courier to Bureau Veritas - UltraTrace Laboratories.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits or reviews have been carried out.

Criteria

Commentary

Mineral tenement and land tenure status

- Contessa and Gidgee Flat are located on E52/2456, within Lodestar's Ned's Creek project. The tenement is owned by Audacious Resources, a wholly-owned subsidiary of Lodestar Minerals and expires on 16/09/2020. The tenement is within the native title claim WC99/46 of the Yugunga-Nya Group. Lodestar has signed a Heritage Agreement with the traditional owners to carry out mineral exploration on the tenement.
- Yowereena Contessa may extend into M52/780. The tenements on which the historic
 exploration was completed and in which Lodestar is earning an 80% interest are held by
 Vango Mining Limited and Dampier (Plutonic) Pty Ltd (a wholly-owned subsidiary of Vango
 Mining Limited).
 - o M52/780 expires on 26/09/2034 (VANGO 60/100:DAMPIER 40/100).
- Lodestar is earning an 80% interest in the tenements by spending \$357,000 before the anniversary of the farm-in agreement, in May 2018.
- M52/780 is located within the Yugunga Nya people native title claim WAD6132/1998.

Exploration done by other parties

- Exploration commenced at McDonald Well in the late 1960's, WMC explored for Zambian Copper Belt style mineralisation and completed regional geological mapping and sampling, followed by minor percussion drilling. CRA Exploration completed regional mapping and auger sampling, also at McDonald Well. No significant anomalies were identified on the tenements. Minor exploration drilling by Barrick and CRA Exploration east and south of Contessa intersected ultramafic lithologies, confirming the extent of the greenstone sequence in this area. There has been no material exploration by other parties over the Contessa area.
- Gold exploration in the Plutonic Well greenstone belt commenced in 1986. Marymia Exploration, in their 1994 report, state that there had been little or no previous exploration within the Yowereena tenements.

Geology

• The geology of the project area comprises the northern margin of the Proterozoic Yerrida Basin. The geology forms two discrete units; Proterozoic sediments of the Yerrida Basin that are prospective for sediment-hosted copper and base metal mineralisation in black shale and carbonate sequences, with evidence of secondary and primary copper mineralisation in the Thaduna district, overlie Archaean basement rocks on the northern margin of the Yerrida Basin. The basement-sediment contact trends east-west and Lodestar's exploration has identified extensive gold anomalism adjacent to this contact. The basement consists of granite and fringing mafic to intermediate and ultramafic rocks that are not well exposed at surface. The mafic-ultramafic rocks and the adjacent granite that hosts gold mineralisation are thought to be Archaean in age but may be part of the Glenburgh orogenic event along the northern Yilgarn margin. Identification of syenite-hosted, intrusion-related gold mineralisation at Brumby indicates that this region differs from other lode gold occurrences in the Plutonic Well greenstone belt and the surrounding Proterozoic fold belt and does not form part of the adjacent Marymia Inlier.

Drill hole information

Tabulated data is provided in Tables 1 and 2 and the Annexure.

Data aggregation methods

- Assay data are reported as individual 1 metre or 4 metre composites for RC samples. Selected RC intervals are reported as aggregates of individual 1m samples in zones where mineralisation was observed.
 - Intersections were calculated using no top-cut, a minimum 0.5g/t Au cut-off and up to 2m internal dilution.

Relationship between mineralisation widths and intercept lengths

 Drilling was oriented towards 130 degrees, perpendicular to the regional strike of stratigraphy. Measurement of foliation in the area indicates steep dips however mineralisation appears to dip shallowly to steeply to the north. The actual dip of mineralisation and its relationship to the drill hole intersections is not confirmed at this stage of exploration but is estimated to approximate true width at Contessa and at Gidgee Flat is estimated to be 90% of true width. Diagrams See Figures 2 to 7. **Balanced reporting** All drill holes are reported in the Annexure. Other substantive None to report. exploration data

Further Work

Contiguous gold mineralisation was intersected by aircore drilling. RC drilling has confirmed and extended the mineralisation and demonstrated a spatial association with the granite contact. This contact is open along strike from the RC drilling and requires systematic testing, initially by aircore drilling. Follow up diamond drilling at Gidgee Flat to ascertain the structural controls in the area of high-grade mineralisation. Systematic RC drilling at Contessa to provide additional coverage between the current RC drill program and the granite contact..